AbstractObjective To investigate the effect of respiratory motion on inadvertent irradiation dose (ⅡD) to the microscopic disease (MD) and expanding margin of target volume in stereotactic body radiotherapy for lung cancer. Methods Based on the pattern of respiration-induced tumor motion during lung radiotherapy, a probability model of MD entry into or exit from internal target volume (ITV) was established and the theoretical dose to MD was calculated according to the static dose distribution by four-dimensional computed tomography. The experimental dose to MD during respiratory motion was measured using a respiration simulation phantom and optically stimulated luminescence (OSL) and then compared with the theoretical value for model validation. Results For the target volume in periodic motion, the deviation of the theoretical dose to MD from the experimental value measured by OSL was less than 5%. A 10-mm margin around ITV received a biological dose higher than 80 Gy. Conclusions The dose model established in this study can accurately predict the irradiation dose to MD in the target volume in periodic motion. Respiratory motion increases ⅡD to MD and there is no need to expand clinical target volume.
Fund:National Natural Science Foundation of China (81372436);Joint Project of Henan Province and Ministry of Health (201201009);Science and Technology Innovation Team of Zhengzhou (121PCXTD524)
Corresponding Authors:
Ge Hong,Email:gehong666@126.com
Cite this article:
Tian Lingling,Mao Ronghu,Li Dingjie et al. Effect of respiratory motion on radiation dose to the margin of target volume in stereotactic body radiotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2017, 26(12): 1426-1429.
Tian Lingling,Mao Ronghu,Li Dingjie et al. Effect of respiratory motion on radiation dose to the margin of target volume in stereotactic body radiotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2017, 26(12): 1426-1429.
[1] Robinson CG,DeWees TA,El Naqa IM,et al. Patterns of failure after stereotactic body radiation therapy or lobar resection for clinical stage Ⅰ non-small-cell lung cancer[J].J Thorac Oncol,2013,8(2):192-201.DOI:10.1097/JTO.0b013e31827ce361. [2] Shibamoto Y,Hashizume C,Baba F,et al. Stereotactic body radiotherapy using a radiobiology-based regimen for stage Ⅰ nonsmall cell lung cancer:a multicenter study[J].Cancer,2012,118(8):2078-2084.DOI:10.1002/cncr.26470. [3] Taremi M,Hope A,Dahele M,et al. Stereotactic body radiotherapy for medically inoperable lung cancer:prospective,single-center study of 108 consecutive patients[J].Int J Radiat Oncol Biol Phys,2012,82(2):967-973.DOI:10.1016/j.ijrobp.2010.12.039. [4] George R,Vedam SS,Chung TD,et al. The application of the sinusoidal model to lung cancer patient respiratory motion[J].Med Phys,2005,32(9):2850-2861.DOI:10.1118/1.2001220. [5] Lujan AE,Larsen EW,Balter JM,et al. A method for incorporating organ motion due to breathing into 3D dose calculations[J].Med Phys,1999,26(5):715-720.DOI:10.1118/1.598577. [6] Ge H,Cai J,Kelsey CR,et al. Quantification and minimization of uncertainties of internal target volume for stereotactic body radiation therapy of lung cancer[J].Int J Radiat Oncol Biol Phys,2013,85(2):438-443.DOI:10.1016/j.ijrobp.2012.04.032. [7] Grills IS,Yan D,Black QC,et al. Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2007,67(3):709-719.DOI:10.1016/j.ijrobp.2006.09.046. [8] Morarji K,Fowler A,Vinod SK,et al. Impact of FDG-PET on lung cancer delineation for radiotherapy[J].J Med Imaging Radiat Oncol,2012,56(2):195-203.DOI:10.1111/j.1754-9485.2012.02356.x. [9] Siedschlag C,Boersma L,Van Loon J,et al. The impact of microscopic disease on the tumor control probability in non-small-cell lung cancer[J].Radiother Oncol,2011,100(3):344-350.DOI:10.1016/j.radonc.2011.08.046. [10] Yuan SH,Meng X,Yu JM,et al. Determining optimal clinical target volume margins on the basis of microscopic extracapsular extension of metastatic nodes in patients with non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2007,67(3):727-734.DOI:10.1016/j.ijrobp.2006.08.057. [11] Grills IS,Fitch DL,Goldstein NS,et al. Clinicopathologic analysis of microscopic extension in lung adenocarcinoma:defining clinical target volume for radiotherapy[J].Int J Radiat Oncol Biol Phys,2007,69(2):334-341.DOI:10.1016/j.ijrobp.2007.03.023. [12] Withers HR,Peters LJ,Taylor JMG.Dose–response relationship for radiation therapy of subclinical disease[J].Int J Radiat Oncol Biol Phys,1995,31(2):353-359.DOI:10.1016/0360-3016(94)00354-N.