AbstractObjective To measure the actual absorbed dose of the target in the QUASAR Respiratory Motion Phantom using the CyberKnife Synchrony Respiratory Tracking System, and to evaluatethe effect of density heterogeneity on the absorbed dose of tumor gross target volume (GTV). Methods Nine groups were obtained by making different patterns of QUASAR phantom:rib thickness of 0, 20, and 50 mm, and motion amplitudes of 0, 10, and 15 mm. The nine groups were treated with static computed tomography (CT) in different time phases of four-dimensional CT (4DCT) plan, with the same beam and number of monitor units, and the 4D accumulated dose was calculated. The doses of static and 4D plans were calculated using Ray-tracing and Monte Carlo algorithms, and the absorbed doses of GTV in the nine groups were measured at the same time. Results There were a decrease in calculated absorbed dose of GTV and an increase in deviation between the planned and actual dose, with the increases in simulated rib thickness and motion amplitude. Conclusions The density heterogeneity has an impact on the absorbed dose of GTV. Both static CT and 4DCT plan can evaluate the absorbed dose of GTV in case of small rib thickness and motion amplitude, and 4DCT plan with Monte Carlo algorithm may be the optimal method for evaluation of the absorbed dose of GTV in case of large rib thickness and motion amplitude (deviation<3%)
Corresponding Authors:
Li Qin,Email:675181445@qq.com
Cite this article:
Liu Hongyuan,Yang Zhiyong,Liang Zhiwen et al. Effect of density heterogeneity on absorbed dose with CyberKnife Synchrony Respiratory Tracking System[J]. Chinese Journal of Radiation Oncology, 2017, 26(10): 1204-1208.
Liu Hongyuan,Yang Zhiyong,Liang Zhiwen et al. Effect of density heterogeneity on absorbed dose with CyberKnife Synchrony Respiratory Tracking System[J]. Chinese Journal of Radiation Oncology, 2017, 26(10): 1204-1208.
[1] Adler Jr JR,Chang SD,Murphy MJ,et al. The CyberKnife:a frameless robotic system for radiosurgery[J].Stereotact Funct Neurosurg,1997,69(1-4 Pt 2):124-128.DOI:10.1159/000099863. [2] Chang SD,Adler Jr JR.Treatment of cranial base meningiomas with linear accelerator radiosurgery[J].Neurosurgery,1997,41(5):1019-1025.DOI:10.1097/00006123-199711000-00003. [3] Coste-Manière,Olender D,Kilby W,et al. Robotic whole body stereotactic radiosurgery:clinical advantages of the CyberKnifeintegrated system[J].Int J Med Robot Comput Assist Surg,2005,1(2):28-39.DOI:10.1002/rcs.39. [4] Brown WT,Wu XD,Fayad F,et al. CyberKniferadiosurgery for stage Ⅰ lung cancer:results at 36 months[J].Clin Lung Cancer,2007,8(8):488-492.DOI:10.3816/CLC.2007.n.033. [5] Whyte RI,Crownover R,Murphy MJ,et al. Stereotactic radiosurgery for lung tumors:preliminary report of a phase Ⅰ trial[J].Ann Thorac Surg,2003,75(4):1097-1101.DOI:10.1016/S0003-4975(02)04681-7. [6] Murphy MJ.Tracking moving organs in real time[J].Semin Radiat Oncol,2004,14(1):91-100.DOI:10.1053/j.semradonc.2003.10.005. [7] Nakamura M,Narita Y,Sawada A,et al. Impact of motion velocity on four-dimensional target volumes:a phantom study[J].Med Phys,2009,36(5):1610-1617.DOI:10.1118/1.3110073. [8] 胡斌,程军平,彭振军,等.全身肿瘤立体定向放射外科系统—第5代射波刀[J].医疗装备,2016,29(3):50-51.DOI:10.3969/j.issn.1002-2376.2016.03.028. Hu B,Cheng JP,Peng ZJ,et al. Stereotactic radiosurgery system for whole body tumors-fifth generation wave knife[J].Med Equip,2016,29(3):50-51.DOI:10.3969/j.issn.1002-2376.2016.03.028. [9] 黄晓延,陈明,张黎,等.基于4DCT影像的放射治疗计划设计[A]//第二届中国现代医学研究方法暨学科交叉创新研讨会论文汇编[G].广州:中华医学会中华医学杂志编辑委员会,2007:84-86. HuangXY,Chen M,Zhang L,et al. Design of radiotherapy planning based on 4DCT image[A]//Proceedings of the second symposium on modern medical research methods and interdisciplinary innovation in China[G].Guangzhou:Editorial Committee of Chinese Medical Journal of Chinese Medical Association,2007:84-86. [10] 杨晶,陈秘,梁志文,等.射波刀Iris可变准直器孔径大小的重复性评价[J].中华放射医学与防护杂志,2016,36(4):291-293.DOI:10.3760/cma.j.issn.0254-5098.2016.04.012. Yang J,Chen M,Liang ZW,et al. Evaluation on repeatability of the aperture sizes of CyberKnife VSITM Iris collimator[J].Chin J Radiol Med Prot,2016,36(4):291-293.DOI:10.3760/cma.j.issn.0254-5098.2016.04.012. [11] Chan MKH,Kwong DLW,Ng SCY,et al. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers[J].Med Phys,2013,40(4):041712.DOI:10.1118/1.4794505. [12] Hoogeman M,Prévost JB,Nuyttens J,et al. Clinical accuracy of the respiratory tumor tracking system of the cyberKnife:assessment by analysis of log files[J].Int J Radiat Oncol Biol Phys,2009,74(1):297-303.DOI:10.1016/j.ijrobp.2008.12.041. [13] Seco J,Sharp GC,Wu ZJ,et al. Dosimetric impact of motion in free-breathing and gated lung radiotherapy:a 4D Monte Carlo study of intrafraction and interfraction effects[J].Med Phys,2008,35(1):356-366.DOI:10.1118/1.2821704. [14] Rosu M,Balter JM,Chetty IJ,et al. How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?[J].Med Phys,2007,34(1):233-245.DOI:10.1118/1.2400624. [15] Huang TC,Liang JA,Dilling T,et al. Four-dimensional dosimetry validation and study in lung radiotherapy using deformable image registration and Monte Carlo techniques[J].Radiat Oncol,2010,5(1):45.DOI:10.1186/1748-717X-5-45. [16] Richter A,Wilbert J,Flentje M.Dosimetric evaluation of intrafractional tumor motion by means of a robot driven phantom[J].Med Phys,2011,38(10):5280-5289.DOI:10.1118/1.3633890. [17] Wilcox EE,Daskalov GM.Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by CyberKnife[J].Med Phys,2008,35(6):2259-2266.DOI:10.1118/1.2912179. [18] Wilcox EE,Daskalov GM,Lincoln H,et al. Comparison of planned dose distributions calculated by Monte Carlo and Ray-Trace algorithms for the treatment of lung tumors with CyberKnife:a preliminary study in 33 patients[J].Int J Radiat Oncol Biol Phys,2010,77(1):277-284.DOI:10.1016/j.ijrobp.2009.08.001. [19] Chang SD,Main W,Martin DP,et al. An analysis of the accuracy of the CyberKnife:a robotic frameless stereotactic radiosurgical system[J].Neurosurgery,2003,52(1):140-146.DOI:10.1097/00006123-200301000-00018. [20] Deng J,Guerrero T,Ma CM,et al. Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning[J].Phys Med Biol,2004,49(9):1689-1704.DOI:10.1088/0031-9155/49/9/007. [21] Kawrakow I.Accurate condensed history Monte Carlo simulation of electron transport.Ⅱ.Application to ion chamber response simulations[J].Med Phys,2000,27(3):499-513.DOI:10.1118/1.598918. [22] 沙吉达木·阿依甫江,葛淼,何进伟.中国健康成年人呼吸频率正常参考值与地理因素的关系[A]//中国地理学会2012年学术年会[C].开封:中国地理学会,2012. Sagidamu·Aivko,Ge M,He JW.The relationship between normal reference value of respiratory rate and geographical factors in Chinese healthy adults[A]//2012 annual academic meeting of China society of geography[C].Kaifeng:Geographical Society China,2012. [23] 汪品力.肋间隙的解剖[J].四川解剖学杂志,1985(1):28-33.Wang PL.Anatomy of intercostal space[J].Sichuan J Anat.1985(1):28-33. [24] 冯国生,梁远,吴丹玲,等.CT值-相对电子密度转换曲线的影响因素分析[J].中华放射肿瘤学杂志,2012,21(3):281-284.DOI:10.3760/cma.j.issn.1004-4221.2012.03.026. Feng GS,Liang Y,Wu DL,et al. Impact factor of relationships between CT value and relative electron density for treatment planning system[J].Chin J Radiat Oncol,2012,21(3):281-284.DOI:10.3760/cma.j.issn.1004-4221.2012.03.026.