[an error occurred while processing this directive] | [an error occurred while processing this directive]
Radiomics:clinical application and progress
Li Zhenjiang,Mao Yu,Li Baosheng,Li Hongsheng
Department of Radiation Oncology,Shandong Cancer Hospital to Shandong University,Shandong Academy of Medical Sciences,Ji’na 250117,China (Li ZJ,Mao Y,Li BS,Li HS);Laboratory of Image Science and Technology,Southeast University,Nanjing 210096,China (Li ZJ,Li BS) Department of Oncology,First Hospital of Qinhuangdao,Qinhuangdao 066000,China (Mao Y)
Abstract Radiomics is an emerging tumor diagnosis and auxiliary detection technique that has undergone rapid development in the past few decades. The availability of new imaging equipment and reagents, as well as the use of standardized imaging protocol, has made quantitative and standardized imaging analysis possible. Radiomics is a field of study that involves the extraction of a large number of quantitative features from areas of interest in medical images using data-characterization algorithms, and transformation of these data into first-order or high-order data. The accuracy of clinical diagnosis and prognostic value of radiomics can be further improved by analyzing the relationship between data layers. Although radiomics has many advantages and has made great progress, its standardization, reliability, and application in large data and multicenter studies will need to be further optimized.
[1] Yachida S,Jones S,Bozic I,et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer[J].Nature,2010,467(7319):1114-1117.DOI:10.1038/nature09515. [2] Gerlinger M,Rowan AJ,Horswell S,et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J].N Engl J Med,2012,366(10):883-892.DOI:10.1056/NEJMoa1113205. [3] Sottoriva A,Spiteri I,Piccirillo SGM,et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics[J].Proc Natl Acad Sci USA,2013,110(10):4009-4014.DOI:10.1073/pnas.1219747110. [4] Jaffe CC.Measures of response:RECIST,WHO,and new alternatives[J].J Clin Oncol,2006,24(20):3245-3251.DOI:10.1200/JCO.2006.06.5599. [5] Kumar V,Gu YH,Basu S,et al. Radiomics:the process and the challenges[J].Magn Reson Imaging,2012,30(9):1234-1248.DOI:10.1016/j.mri.2012.06.010. [6] O′Sullivan F,Roy S,O′Sullivan J,et al. Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET[J].Biostatistics,2005,6(2):293-301.DOI:10.1093/biostatistics/kxi010. [7] Jain AK,Dubes RC.Algorithms for clustering data[M].Upper Saddle River,NJ,USA:Prentice-Hall,Inc,1988. [8] Lam SWC.Texture feature extraction using gray level gradient based co-occurence matrices[A]//IEEE International Conference on Systems,Man,and Cybernetics[C].Beijing:IEEE,1996:267-271.DOI:10.1109/ICSMC.1996.569778. [9] Haralick RM,Shanmugam K,Dinstein IH.Textural features for image classification[J].IEEE Trans Syst Man Cybern,1973,SMC-3(6):610-621.DOI:10.1109/TSMC.1973.4309314. [10] Galloway MM.Texture analysis using gray level run lengths[J].Comput Graph Image Process,1975,4(2):172-179.DOI:10.1016/S0146-664X (75)80008-6. [11] Castellano G,Bonilha L,Li LM,et al. Texture analysis of medical images[J].Clin Radiol,2004,59(12):1061-1069.DOI:10.1016/j.crad.2004.07.008. [12] Zinovev D,Raicu D,Furst J,et al. Predicting radiological panel opinions using a panel of machine learning classifiers[J].Algorithms,2009,2(4):1473-1502.DOI:10.3390/a2041473. [13] Soh LK,Tsatsoulis C.Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J].IEEE Trans Geosci Remote Sens,1999,37(2):780-795.DOI:10.1109/36.752194. [14] Suárez J,Gancedo E,lvarez JM,et al. Optimum compactness structures derived from the regular octahedron[J].Eng Struct,2008,30(11):3396-3398.DOI:10.1016/j.engstruct.2008.04.030. [15] Tang XO.Texture information in run-length matrices[J].IEEE Trans Image Process,1998,7(11):1602-1609.DOI:10.1109/83.725367. [16] Rosenfeld A,Weszka JS.Picture recognition[A]//Fu S.Digital pattern recognition[M].Berlin Heidelberg:Springer,1976:135-166.DOI:10.1007/978-3-642-96303-2_5. [17] Daugman JG.Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two-dimensional visual cortical filters[J].J Opt Soc Am A,1985,2(7):1160-1169.DOI:10.1364/JOSAA.2.001160. [18] Bovik A,Clark M,Giesler WS.Multichannel texture analysis using localized spatial filters[J].IEEE Trans Pattern Anal Mach Intell,1990,12(1):55-73.DOI:10.1109/34.41384. [19] Mallat S.Multifrequency channel decompositions of images and wavelet models[J].IEEE Trans Acoust Speech Signal Process,1989,37(12):2091-2110.DOI:10.1109/29.45554. [20] Laine A,Fan J.Texture classification by wavelet packet signatures[J].IEEE Trans Pattern Anal Mach Intell,1993,15(11):1186-1191.DOI:10.1109/34.244679. [21] Lu CS,Chung PC,Chen CF.Unsupervised texture segmentation via wavelet transform[J].Pattern Recognit,1997,30(5):729-742.DOI:10.1016/S0031-3203(96)00116-1. [22] Basu S,Hall LO,Goldgof DB,et al. Developing a classifier model for lung tumors in CT-scan images[A]//2011 IEEE International Conference on Systems,Man,and Cybernetics[C].Anchorage,Alaska:IEEE,2011.DOI:10.1109/ICSMC.2011.6083840. [23] Kotsiantis SB,Zaharakis LD,Pintelas PE.Machine learning:a review of classification and combining techniques[J].Artif Intell Rev,2006,26(3):159-190.DOI:10.1007/s10462-007-9052-3. [24] Fetit AE,Novak J,Peet AC,et al. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours[J].NMR Biomed,2015,28(9):1174-1184.DOI:10.1002/nbm.3353. [25] Wibmer A,Hricak H,Gondo T,et al. Haralick texture analysis of prostate MRI:utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J].Eur Radiol,2015,25(10):2840-2850.DOI:10.1007/s00330-015-3701-8. [26] Khalvati F,Wong A,Haider MA.Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models[J].BMC Med Imaging,2015,15:27.DOI:10.1186/s12880-015-0069-9. [27] Li ZJ,Mao Y,Li HS,et al. Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR[J].Magn Reson Med,2016,76(5):1410-1419.DOI:10.1002/mrm.26029. [28] Choi ER,Lee HY,Jeong JY,et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma[J].Oncotarget,2016,7(41):67302-67313.DOI:10.18632/oncotarget.11693. [29] Cui Y,Song J,Pollom E,et al. Quantitative analysis of 18F-fluorodeoxyglucose positron emission tomography identifies novel prognostic imaging biomarkers in locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy[J].Int J Radiat Oncol Biol Phys,2016,96(1):102-109.DOI:10.1016/j.ijrobp.2016.04.034. [30] Aerts HJ,Velazquez ER,Leijenaar RTH,et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nat Commun,2014,5:4006.DOI:10.1038/ncomms5006. [31] Gevaert O,Mitchell LA,Achrol AS,et al. Glioblastoma multiforme:exploratory radiogenomic analysis by using quantitative image features[J].Radiology,2015,276(1):313.DOI:10.1148/radiol.2015154019. [32] El Naqa I,Grigsby PW,Apte A,et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes[J].Pattern Recognit,2009,42(6):1162-1171.DOI:10.1016/j.patcog.2008.08.011. [33] Tixier F,Le Rest CC,Hatt M,et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer[J].J Nucl Med,2011,52(3):369-378.DOI:10.2967/jnumed.110.082404. [34] Huynh E,Coroller TP,Narayan V,et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J].Radiother Oncol,2016,120(2):258-266.DOI:10.1016/j.radonc.2016.05.024. [35] Mattonen SA,Palma DA,Johnson C,et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer:physician performance versus radiomic assessment[J].Int J Radiat Oncol Biol Phys,2016,94(5):1121-1128.DOI:10.1016/j.ijrobp.2015.12.369. [36] Nie K,Shi LM,Chen Q,et al. Rectal cancer:assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI[J].Clin Cancer Res,2016.DOI:10.1158/1078-0432.CCR-15-2997. [37] Klaeser B,Wiskirchen J,Wartenberg J,et al. PET/CT-guided biopsies of metabolically active bone lesions:applications and clinical impact[J].Eur J Nucl Med Mol Imaging,2010,37(11):2027-2036.DOI:10.1007/s00259-010-1524-z. [38] Tatli S,Gerbaudo VH,Mamede M,et al. Abdominal masses sampled at PET/CT-guided percutaneous biopsy:initial experience with registration of prior PET/CT images[J].Radiology,2010,256(1):305-311.DOI:10.1148/radiol.10090931.