[an error occurred while processing this directive] | [an error occurred while processing this directive]
Advances in magnetic resonance imaging-guided adaptive radiotherapy
Huang Wei,Li X.Allen,Li Baosheng
Department of Radiation Oncology IV,Shandong Cancer Hospital affiliated to Shandong University,Shandong Academy of Medical Sciences,Ji′nan,250117,China
Abstract Cone-beam computed tomography (CBCT)-guided radiotherapy has been widely used in radiotherapy, but it still has many limitations. Using magnetic resonance imaging (MRI) instead of CBCT for imaging-guided radiotherapy can not only make use of the advantages of MRI, but it also allows for online and real-time tracking of tumor motion and biological changes. This technique truly realizes the real-time MRI-guided adaptive radiotherapy (ART) in anatomy and biology, and sets another milestone in the advancement of radiotherapy. This review summarizes the technical advantages of MRI-guided radiotherapy, the basic structure and type of MR-Linac, and the technical difficulties and solutions of MRIgART.
Fund:Youth Projects of National Natural Science Foundation of China (81402538);Key Projects of National Natural Science Foundation of China (81530060);Key Projects of Shandong Natural Science Foundation of China (ZR2015QZ09);Taishan Scholars Construction Project (ts20120505)
Cite this article:
. Advances in magnetic resonance imaging-guided adaptive radiotherapy[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 819-822.
. Advances in magnetic resonance imaging-guided adaptive radiotherapy[J]. Chinese Journal of Radiation Oncology, 2017, 26(7): 819-822.
[1] Jaffray DA,Siewerdsen JH,Wong JW,et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy[J].Int J Radiat Oncol Biol Phys,2002,53(5):1337-1349.DOI:10.1016/S0360-3016(02)02884-5. [2] Smitsmans MHP,de Bois J,Sonke JJ,et al. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy[J].Int J Radiat Oncol Biol Phys,2005,63(4):975-984.DOI:10.1016/j.ijrobp.2005.07.973. [3] Dempsey JF,Benoit D,Fitzsimmons JR,et al. A device for realtime 3D image-guided IMRT[J].Int J Radiat Oncol Biol Phys,2005,63(S1):S202.DOI:10.1016/j.ijrobp.2005.07.349. [4] Sawant A,Keall P,Pauly KB,et al. Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy[J].BioMed Res Int,2014,2014:485067.DOI:10.1155/2014/485067. [5] Bostel T,Nicolay NH,Grossmann JG,et al. MR-guidance-a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy[J].Radiat Oncol,2014,9:12.DOI:10.1186/1748-717X-9-12. [6] Fallone BG,Murray B,Rathee S,et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system[J].Med Phys,2009,36(6):2084-2088.DOI:10.1118/1.3125662. [7] Fallone BG.The rotating biplanar linac-magnetic resonance imaging system[J].Semin Radiat Oncol,2014,24(3):200-202.DOI:10.1016/j.semradonc.2014.02.011. [8] Mutic S,Dempsey JF.The ViewRay system:magnetic resonance-guided and controlled radiotherapy[J].Semin Radiat Oncol,2014,24(3):196199.DOI:10.1016/j.semradonc.2014.02.008. [9] Yang YL,Cao MS,Sheng K,et al. Longitudinal diffusion MRI for treatment response assessment:preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system[J].Med Phys,2016,43(3):1369-1373.DOI:10.1118/1.4942381. [10] Raaymakers BW,Lagendijk JJW.Integrating a 1.5 T MRI scanner with a 6 MV accelerator:proof of concept[J].Phys Med Biol,2009,54(12):N229-N237.DOI:10.1088/0031-9155/54/12/N01. [11] Crijns S,Raaymakers B.From static to dynamic 1.5T MRI-linac prototype:impact of gantry position related magnetic field variation on image fidelity[J].Phys Med Biol,2014,59(13):3241-3247.DOI:10.1088/0031-9155/59/13/3241. [12] Keall PJ,Barton M,Crozier S,et al. The Australian magnetic resonance imaging-linac program[J].Semin Radiat Oncol,2014,24(3):203-206.DOI:10.1016/j.semradonc.2014.02.015. [13] Whelan B,Gierman S,Holloway L,et al. A novel electron accelerator for MRI-Linac radiotherapy[J].Med Phys,2016,43(3):1285-1294.DOI:10.1118/1.4941309. [14] Crijns SPM,Raaymakers BW,Lagendijk JJW.Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy[J].Phys Med Biol,2011,56(1):289-297.DOI:10.1088/0031-9155/56/1/017. [15] Aubin JS,Santos DM,Steciw S,et al. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac[J].Med Phys,2010,37(9):4916-4923.DOI:10.1118/1.3481513. [16] Lamey M,Burke B,Blosser E,et al. Radio frequency shielding for a linac-MRI system[J].Phys Med Biol,2010,55(4):995-1006.DOI:10.1088/0031-9155/55/4/006. [17] Kirkby C,Murray B,Rathee S,et al. Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field[J].Med Phys,2010,37(9):4722-4732.DOI:10.1118/1.3475942. [18] Raaijmakers AJE,Raaymakers BW,Lagendijk JJW.Integrating a MRI scanner with a 6 MV radiotherapy accelerator:dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons[J].Phys Med Biol,2005,50(7):1363-1376.DOI:10.1088/0031-9155/50/7/002. [19] Raaijmakers AJE,Raaymakers BW,van der Meer S,et al. Integrating a MRI scanner with a 6 MV radiotherapy accelerator:impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field[J].Phys Med Biol,2007,52(4):929-939.DOI:10.1088/0031-9155/52/4/005. [20] Oborn BM,Metcalfe PE,Butson MJ,et al. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT:impact of the MRI and MRI fringe field[J].Med Phys,2012,39(2):874-890.DOI:10.1118/1.3676181. [21] van Heijst TCF,den Hartogh MD,Lagendijk JJW,et al. MR-guided breast radiotherapy:feasibility and magnetic-field impact on skin dose[J].Phys Med Biol,2013,58(17):5917-5930.DOI:10.1088/0031-9155/58/17/5917. [22] Paulson ES,Erickson B,Schultz C,et al. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning[J].Med Phys,2015,42(1):28-39.DOI:10.1118/1.4896096. [23] Vestergaard A,Hafeez S,Muren LP,et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer[J].Radiother Oncol,2016,118(1):154-159.DOI:10.1016/j.radonc.2015.11.003. [24] Prior P,Chen XF,Botros M,et al. MRI-based IMRT planning for MR-linac:comparison between CT-and MRI-based plans for pancreatic and prostate cancers[J].Phys Med Biol,2016,61(10):3819-3842.DOI:10.1088/0031-9155/61/10/3819. [25] Lagendijk JJW,Raaymakers BW,Van den Berg CA,et al. MR guidance in radiotherapy[J].Phys Med Biol,2014,59(21):R349-R369.DOI:10.1088/0031-9155/59/21/R349. [26] Merna C,Rwigema JCM,Cao MS,et al. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer[J].Med Dosim,2016,41(1):87-91.DOI:10.1016/j.meddos.2015.09.002. [27] van der Heide UA,Houweling AC,Groenendaal G,et al. Functional MRI for radiotherapy dose painting[J].Magn Reson Imaging,2012,30(9):1216-1223.DOI:10.1016/j.mri.2012.04.010. [28] Moteabbed M,Schuemann J,Paganetti H.Dosimetric feasibility of real-time MRI-guided proton therapy[J].Med Phys,2014,41(11):111713.DOI:10.1118/1.4897570.