Department of Radiotherapy, Peking University Cancer Hospital& Institute,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing),Beijing 100142,China (Zhang YB,Hu QQ,Yue HZH,Wu H);Department of Therapeutic Radiology, Yale University, New Haven CT 06510,USA (Deng J)
Abstract Objective To investigate the dose distribution and radiation risk of Varian thoracic cone beam computed tomography (CBCT) with default parameters with reference to Monte Carlo simulation and International Commission on Radiological Protection (ICRP) report 110. Methods EGSnrc/BEAMnrc code was used to simulate the material, thickness, and geometry of the kV CBCT source (kVS) to establish the kVS model. A benchmarked MCSIM code was applied to calculate the dose distribution in the ICRP phantom after the scan with the standard thoracic parameters (110 kV, 20 mA, and 262 mAs), and the conversion coefficient of absolute dose was obtained in a spherical phantom following the TG-61 protocol. The results of Monte Carlo simulation were validated by PDD and Profile in a water phantom and the measurement of the absolute dose in the computed tomography dose index (CTDI) phantom and Alderson phantom. The models including BEIR VⅡ were used to evaluate the radiation risks. Results With reference to the criterion of 3%/1 mm, the uncertainties of PDD and Profile were less than 2%. The difference between the measured and calculated values was<2.9% in the CTDI phantom and ≤0.05 cGy in the Alderson phantom. In the ICRP110 phantom, the doses to the left lung, right lung, left breast, right breast, heart, thyroid, trachea, cancellous bone, and cortical bone were 1.28, 1.39, 1.74, 1.80, 1.46, 0.48, 0.88, 0.85, and 1.84 cGy, respectively. The relative risks of ischemic heart disease, breast cancer, lung cancer, thyroid cancer, and tracheal cancer in a standard scan were 1.001, 1.009, 1.019, 1.000, and 1.008, respectively. Conclusions The accumulated dose and long-term risks of CBCT during image-guided thoracic radiotherapy cannot be neglected and should be effectively controlled.
Zhang Yibao,Deng Jun,Hu Qiaoqiao et al. Imaging dose and risk of Varian thoracic cone beam CT to the ICRP computational reference phantom[J]. Chinese Journal of Radiation Oncology, 2016, 25(3): 275-278.
Zhang Yibao,Deng Jun,Hu Qiaoqiao et al. Imaging dose and risk of Varian thoracic cone beam CT to the ICRP computational reference phantom[J]. Chinese Journal of Radiation Oncology, 2016, 25(3): 275-278.
[1] van Kranen S,van Beek S,Rasch C,et al. Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance[J].Int J Radiat Oncol Biol Phys,2009,73(5):1566-1573.DOI:10.1016/j.ijrobp.2008.11.035. [2] Gendrin C,Furtado H,Weber C,et al. Monitoring tumor motion by real time 2D/3D registration during radiotherapy[J].Radiother Oncol,2012,102(2):274-280.DOI:10.1016/j.radonc.2011.07.031. [3] Yang Y,Schreibmann E,Li TF,et al. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation[J].Phys Med Biol,2007,52(3):685-705.DOI:10.1088/0031-9155/52/3/011. [4] Guan HQ,Dong H.Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy[J].Phys Med Biol,2009,54(20):6239-6250.DOI:10.1088/0031-9155/54/20/013. [5] Borst GR,Sonke JJ,Betgen A,et al. Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients;first clinical results and comparison with electronic portal-imaging device[J].Int J Radiat Oncol Biol Phys,2007,68(2):555-561.DOI:10.1016/j.ijrobp.2007.01.014. [6] Kim DW,Chung WK,Yoon M.Imaging doses and secondary cancer risk from kilovoltage cone-beam CT in radiation therapy[J].Health Phys,2013,104(5):499-503.DOI:10.1097/HP.0b013e318285c685. [7] Goske MJ,Applegate KE,Boylan J,et al. The ‘Image Gently’campaign:increasing CT radiation dose awareness through a national education and awareness program[J].Pediatr Radiol,2008,38(3):265-269.DOI:10.1007/s00247-007-0743-3. [8] Brink JA,Amis Jr ES.Image Wisely:a campaign to increase awareness about adult radiation protection[J].Radiology,2010,257(3):601-602.DOI:10.1148/radiol.10101335. [9] Murphy MJ,Balter J,Balter S,et al. The management of imaging dose during image-guided radiotherapy:report of the AAPM Task Group 75[J].Med Phys,2007,34(10):4041-4063.DOI:10.1118/1.2775667. [10] Wen N,Guan HQ,Hammoud R,et al. Dose delivered from Varian′s CBCT to patients receiving IMRT for prostate cancer[J].Phys Med Biol,2007,52(8):2267-2276.DOI:10.1088/0031-9155/52/8/015. [11] Kan MWK,Leung LHT,Wong W,et al. Radiation dose from cone beam computed tomography for image-guided radiation therapy[J].Int J Radiat Oncol Biol Phys,2008,70(1):272-279.DOI:10.1016/j.ijrobp.2007.08.062. [12] Ding GX,Duggan DM,Coffey CW.Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy[J].Med Phys,2008,35(3):1135-1144.DOI:10.1118/1.2839096. [13] Ding GX,Coffey CW.Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure[J].Int J Radiat Oncol Biol Phys,2009,73(2):610-617.DOI:10.1016/j.ijrobp.2008.10.006. [14] ICRP. Adult reference computational phantoms. ICRP publication 110.Ann. Amsterdam:Elsevier,2009. [15] Sato T,Endo A,Niita K.Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms[J].Phys Med Biol,2010,55(8):2235-2246.DOI:10.1088/0031-9155/55/8/008. [16] Hadid L,Desbrée A,Schlattl H,et al. Application of the 1ICRP/ICRU reference computational phantoms to internal dosimetry:calculation of specific absorbed fractions of energy for photons and electrons[J].Phys Med Biol,2010,55(13):3631-3641.DOI:10.1088/0031-9155/55/13/004. [17] Zhang YB,Yan YL,Nath R,et al. Personalized assessment of kV cone beam computed tomography doses in image-guided radiotherapy of pediatric cancer patients[J].Int J Radiat Oncol Biol Phys,2012,83(5):1649-1654.DOI:10.1016/j.ijrobp.2011.10.072. [18] Zhang YB,Yan YL,Nath R,et al. Personalized estimation of dose to red bone marrow and the associated leukaemia risk attributable to pelvic kilo-voltage cone beam computed tomography scans in image-guided radiotherapy[J].Phys Med Biol,2012,57(14):4599-4612.DOI:10.1088/0031-9155/57/14/4599. [19] Deng J,Chen Z,Roberts KB,et al. Kilovoltage imaging doses in the radiotherapy of pediatric cancer patients[J].Int J Radiat Oncol Biol Phys,2012,82(5):1680-1688.DOI:10.1016/j.ijrobp.2011.01.062. [20] Deng J,Chen Z,Yu JB,et al. Testicular doses in image-guided radiotherapy of prostate cancer[J].Int J Radiat Oncol Biol Phys,2012,82(1):e39-e47.DOI:10.1016/j.ijrobp.2011.01.071. [21] Rogers DWO,Walters B,Kawrakow I.BEAMnrc User Manual[R].Report No. PIRS-0509.Ottawa:NRCC,2006. [22] Kawrakow I,Rogers DWO.EGSnrc User Manual[R].Report No. PIRS-701.Ottawa:NRCC,2006. [23] Ma CM,Coffey CW,DeWerd LA,et al. AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology[J].Med Phys,2001,28(6):868-893.DOI:10.1118/1.1374247. [24] Palm ,Nilsson E,Herrnsdorf L.Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system[J].J Appl Clin Med Phys,2010,11(1):3085.DOI:10.1120/jacmp.v11i1.3085. [25] NRC. Health Risks From Exposure to Low Levels of Ionizing Radiation-BEIR VⅡ.Washington,DC:The National Academies Press,2006. [26] Darby SC,Ewertz M,McGale P,et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer[J].New Engl J Med,2013,368(11):987-998.DOI:10.1056/NEJMoa1209825. [27] Feng ZS,Wu H,Zhang YB,et al. Dosimetric comparison between jaw tracking and static jaw techniques in intensity-modulated radiotherapy[J].Radiat Oncol,2015,10(1):28.DOI:10.1186/s13014-015-0329-4. [28] Ouyang L,Solberg T,Wang J.Effects of the penalty on the penalized weighted least-squares image reconstruction for low-dose CBCT[J].Phys Med Biol,2011,56(17):5535-5552.DOI:10.1088/0031-9155/56/17/006. [29] Yan H,Wang XY,Shi F,et al. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy:cone/ring artifact correction and multiple GPU implementation[J].Med Phys,2014,41(11):111912.DOI:10.1118/1.4898324. [30] Marks LB,Yorke ED,Jackson A,et al. Use of normal tissue complication probability models in the clinic[J].Int J Radiat Oncol Biol Phys,2010,76(3):S10-S19.DOI:10.1016/j.ijrobp.2009.07.1754.