Abstract Objective To study the detective sensitivity for position of multi-leave collimators (MLC) using Delta-4. Methods First,the small positional deviation of MLC was simulated and measured using the linac (Varian,Trubeam) equipped with EPID.Then,two beam fields 2.0 cm (x)×6.0 cm (y),7.0 cm (x)×6.0 cm (y) were designed,the x1 and x2 of MLC were expanded 0.1 mm,0.2 mm,0.3 mm...0.9 mm and 1.0 mm,2.0...5.0 mm to external simultaneously,different parameters of 3 mm/3%,2.5 mm/2.5%,2 mm/2%,1.5 mm/1.5% and 1 mm/1% were used in Gamma analysis to analyze the difference between dose distribution detected by Delta-4 and original dose distribution with unexpanded MLC position derived from TPS. Results For 2.0 cm (x)×6.0 cm (y) beam field,the pass rate of original dose distribution was 100%,and that decreased to 95.5% when x1,x2 of MLC were expanded 0.3 mm to external,and decreased to 89.4% when expanded 0.5 mm at 2.5 mm/2.5% statistical standards. For 7.0 cm (x)×6.0 cm (y) beam field,the pass rate of original dose distribution was 96.5%,and that decreased to less than 95% when x2,x2 of MLC were expanded 0.3 mm to external,and passing rate was above 90% when MLC expanded less than 0.5 mm at 1.5 mm/1.5% statistical standards. Conclusions For MLC’s positional deviation in decimillimeter level,raise standards of Gamma analysis properly may improve the capability of Delta-4 for detecting small positional deviation,but it won’t detect all the positional deviation of MLC in decimillimeter level. For different size of beam field,it is proposed to use different analytical standards for Delta-4.
Ni Xinye,Gao Liugang,Lin Tao. Study of sensitivity for detecting small positional deviation of MLC by 3D Detector array Delta-4[J]. Chinese Journal of Radiation Oncology, 2016, 25(2): 168-171.
Ni Xinye,Gao Liugang,Lin Tao. Study of sensitivity for detecting small positional deviation of MLC by 3D Detector array Delta-4[J]. Chinese Journal of Radiation Oncology, 2016, 25(2): 168-171.
[1]Budgell GJ,Mott JH,Williams PC,et al. Requirements for leaf position accuracy for dynamic multileaf collimators[J].Phys Med Biol,2000,45(5):1211-27. DOI:10.1088/0031-9155/45/5/310. [2]Klein EE,Hanley J,Bayouth J,et al.2009 Task Group 142 report:quality assurance ofmedical accelerators[J].Med Phys,2009,36(9):4197-4212.DOI:10.1118/1.3190392. [3]Alber M,Broggi S,Wagter CD,et al. Guidelines for the verification of IMRT.ESTRO Booklet no.9[M].Belgium:ESTRO,2008. [4]LoSasso T,Chui CS,Ling CC.Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy[J].Med Phys,1998,25(10):1919-1927.DOI:10.1118/1.598381 [5]Luo W,Li J,Price RAJr,et al. Monte Carlo based IMRT dose verification using MLC log files and R/V outputs[J].Med Phys,2006,33(7):2557-2564.DOI:10.1118/1.2208916. [6]Rangel A,Dunscombe P.Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC[J].Med Phys,2009,36(7):3304-3309.DOI:10.1118/1.3134244. [7]Yan G,Liu C,Simon TA, et al. On the sensitivity of patient-specific IMRT QA to MLC positioning errors[J].J Appl Clin Med Phys, 2009,10(1):120-128.DOI:10.1120/jacmp.v10i1.2915. [8]Pham T,Luo J.Clinical implementation of a 3D dosimeter for accurate IMRT and VMAT patient specific QA[J].Open J Biophys,2013,3(1):99-111.DOI:10.4236/ojbiphy.2013.31A013. [9]Mohammadi M,Bezak E.Evaluation of MLC leaf positioning using a scanning liquid ionization chamber EPID[J].Phys Med Biol,2007,52(1):N21-33. DOI:10.1088/0031-9155/52/1/N03. [10]Eilertsen K.Automatic detection of single MLCleaf positions with corrections for penumbral effects and portal imager doserate characteristics[J].Phys Med Biol,1997,42(2):313-334. DOI:10.1088/0031-9155/42/2/005 [11]Heilemann G,Poppe B,Laub W.On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc qualityassurance[J].Med Phys,2013,40(3):031702. DOI:10.1118/1.4789580. [12]Nelms BE,Zhen H,Tomé WA.Per-beam,planar IMRT QA passing rates do not predict clinically relevant patient do,se errors[J].Med Phys,2011,38(2):1037-1044. DOI:10.1118/1.3544657. [13]Son J, Baek T, Lee B,et al. A comparison of the quality assurance of four dosimetric tools for intensity modulated radiation therapy[J].Radiol Oncol,2015,49(3):307-313. DOI:10.1515/raon-2015-0021 [14]Lang S,Reggiori G,Puxeu Vaquee J,et al. Pretreatment quality assurance of flattening filter free beams on 224 patients for intensity modulated plans:a multicentric study[J].Med Phys,2012,39(3):1351-1356. DOI:10.1118/1.3685461. [15]Korreman S,Medin J,Kjaer-Kristoffersen F.Dosimetric verification of RapidArc treatment delivery[J].Acta Oncol,2009,48(2):185-191.DOI:10.1080/02841860802287116. [16]Goetzfried T, Rickhey M, Treutwein M,et al. Monte Carlo simulations to replace film dosimetry in IMRT verification[J].Z Med Phys. 2011,21(1):19-25. DOI:10.1016/j.zemedi.2010.05.002. [17]Fakir H,Gaede S,Mulligan M,et al. Development of a novel ArcCHECK ( ) insert for routine quality assurance of VMAT delivery including dosecalculation with inhomogeneities[J].Med Phys,2012,39(7):4203-4208.DOI:10.1118/1.472822. [18]McGarry CK,O′Connell BF,Grattan MW,et al. Octavius 4D characterization for flattened and flattening filter free rotational deliveries[J].Med Phys,2013,40(9):091707.DOI:10.1118/1.4817482. [19]Oliver M,Gagne I,Bush K,et al. Clinical significance of multi-leaf collimator positional errors for volumetric modulated arc therapy[J].Radiother Oncol,2010,97(3):554-560. DOI:10.1016/j.radonc.2010.06.013.