Abstract The cisplatin-based concurrent chemoradiotherapy (CCRT) has been accepted as a standard treatment for most locally advanced cervical cancer. Compared with radiation therapy alone, CCRT can increase tumor control and survival rates, whereas it also can increase the incidence of acute hematological toxicity, which results in the treatment interruption or delay, and may even affect clinical efficacy and prognosis of patients. Therefore, how to reduce the incidence and severity of acute hematological toxicity induced by CCRT is a hot spot of clinical research. Previous studies have demonstrated that the occurrence of hematological toxicity is associated with the volume and dose of irradiated pelvic bone marrow. With the development of modern radiotherapy technology, precise radiotherapy technologies, such as intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT), not only guaranteed the enough dose for tumor, but also realized the protection of normal tissues. This article will focus on the feasibility of bone marrow sparing during CCRT for cervical cancer, and summarize the research progress in recent years.
Fund:China International Medical Foundation Project of Precise Radiotherapy Spark Program (2019-N-11-11); National Natural Science Foundation of China (81872460)
Corresponding Authors:
Yang Shanshan, Email: yangshanshan@hrbmu.edu.cn
Cite this article:
Wang Jia'nan,Yu Xi,Su Qiuyue et al. Research progress on the bone-marrow sparing intensity-modulated radiotherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(8): 732-736.
Wang Jia'nan,Yu Xi,Su Qiuyue et al. Research progress on the bone-marrow sparing intensity-modulated radiotherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2023, 32(8): 732-736.
[1] Sung H, Ferlay J, Siegel RL, et al.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249. DOI: 10.3322/caac.21660. [2] Rose PG, Bundy BN, Watkins EB, et al.Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer[J]. N Engl J Med, 1999,340(15):1144-1153. DOI: 10.1056/NEJM199904153401502. [3] Folkert MR, Shih KK, Abu-Rustum NR, et al.Postoperative pelvic intensity-modulated radiotherapy and concurrent chemotherapy in intermediate- and high-risk cervical cancer[J]. Gynecol Oncol, 2013,128(2):288-293. DOI: 10.1016/j.ygyno.2012.11.012. [4] Keys HM, Bundy BN, Stehman FB, et al.Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma[J]. N Engl J Med, 1999,340(15):1154-1161. DOI: 10.1056/NEJM199904153401503. [5] Peters WA, Liu PY, Barrett RJ, et al.Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix[J]. J Clin Oncol, 2000,18(8):1606-1613. DOI: 10.1200/JCO.2000.18.8.1606. [6] Green JA, Kirwan JM, Tierney JF, et al.Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis[J]. Lancet, 2001,358(9284):781-786. DOI: 10.1016/S0140-6736(01)05965-7. [7] Huang J, Gu F, Ji T, et al.Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial[J]. Radiat Oncol, 2020,15(1):180. DOI: 10.1186/s13014-020-01606-3. [8] Mell LK, Kochanski JD, Roeske JC, et al.Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006,66(5):1356-1365. DOI: 10.1016/j.ijrobp.2006.03.018. [9] Albuquerque K, Giangreco D, Morrison C, et al.Radiation-related predictors of hematologic toxicity after concurrent chemoradiation for cervical cancer and implications for bone marrow-sparing pelvic IMRT[J]. Int J Radiat Oncol Biol Phys, 2011,79(4):1043-1047. DOI: 10.1016/j.ijrobp.2009.12.025. [10] Hayman JA, Callahan JW, Herschtal A, et al.Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging[J]. Int J Radiat Oncol Biol Phys, 2011,79(3):847-852. DOI: 10.1016/j.ijrobp.2009.11.040. [11] Rose BS, Aydogan B, Liang Y, et al.Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy[J]. Int J Radiat Oncol Biol Phys, 2011,79(3):800-807. DOI: 10.1016/j.ijrobp.2009.11.010. [12] Wang DD, Yin YJ, Zhou QC, et al.Dosimetric predictors and Lyman normal tissue complication probability model of hematological toxicity in cervical cancer patients with treated with pelvic irradiation[J]. Med Phys, 2022,49(1):756-767. DOI: 10.1002/mp.15365. [13] Xiang XY, Ding Z, Zeng Q, et al.Dosimetric parameters and absolute monocyte count can predict the prognosis of acute hematologic toxicity in cervical cancer patients undergoing concurrent chemotherapy and volumetric-modulated arc therapy[J]. Radiat Oncol, 2022,17(1):48. DOI: 10.1186/s13014-022-02018-1. [14] Zhou PX, Zhang Y, Luo SG, et al.Pelvic bone marrow sparing radiotherapy for cervical cancer: a systematic review and meta-analysis[J]. Radiother Oncol, 2021,165:103-118. DOI: 10.1016/j.radonc.2021.10.015. [15] Wang SB, Liu JP, Lei KJ, et al.The volume of 99mTc sulfur colloid SPET-defined active bone marrow can predict grade 3 or higher acute hematologic toxicity in locally advanced cervical cancer patients who receive chemoradiotherapy[J]. Cancer Med, 2019,8(17):7219-7226. DOI: 10.1002/cam4.2601. [16] Lewis S, Chopra S, Naga P, et al. Acute hematological toxicity during post-operative bowel sparing image-guided intensity modulated radiation with concurrent cisplatin[J]. Br J Radiol, 2018,91(1092):201 80005. DOI: 10.1259/bjr.20180005. [17] Zhou PX, Zhang Y, Luo SG, et al.Pelvic bone marrow sparing radiotherapy for cervical cancer: a systematic review and meta-analysis[J]. Radiother Oncol, 2021,165:103-118. DOI: 10.1016/j.radonc.2021.10.015. [18] Murakami N, Okamoto H, Kasamatsu T, et al.A dosimetric analysis of intensity-modulated radiation therapy with bone marrow sparing for cervical cancer[J]. Anticancer Res, 2014,34(9):5091-5098. [19] Huang J, Gu F, Ji TL, et al.Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial[J]. Radiat Oncol, 2020,15(1):180. DOI: 10.1186/s13014-020-01606-3. [20] Mahantshetty U, Krishnatry R, Chaudhari S, et al.Comparison of 2 contouring methods of bone marrow on CT and correlation with hematological toxicities in non-bone marrow-sparing pelvic intensity-modulated radiotherapy with concurrent cisplatin for cervical cancer[J]. Int J Gynecol Cancer, 2012,22(8):1427-1434. DOI: 10.1097/IGC.0b013e3182664b46. [21] Bao ZR, Wang DJ, Chen SP, et al.Optimal dose limitation strategy for bone marrow sparing in intensity-modulated radiotherapy of cervical cancer[J]. Radiat Oncol, 2019,14(1):118. DOI: 10.1186/s13014-019-1324-y. [22] McGuire SM, Bhatia SK, Sun W, et al. Using [(18)F]fluorothymidine imaged with positron emission tomography to quantify and reduce hematologic toxicity due to chemoradiation therapy for pelvic cancer patients[J]. Int J Radiat Oncol Biol Phys, 2016,96(1):228-239. DOI: 10.1016/j.ijrobp.2016.04.009. [23] Salas-Ramirez M, Lassmann M, Tran-Gia J.Quantification of the volume fraction of fat, water and bone mineral in spongiosa for red marrow dosimetry in molecular radiotherapy by using a dual-energy (SPECT/)CT[J]. Z Med Phys, 2022,32(4):428-437. DOI: 10.1016/j.zemedi.2022.01.005. [24] Andreychenko A, Kroon PS, Maspero M, et al.The feasibility of semi-automatically generated red bone marrow segmentations based on MR-only for patients with gynecologic cancer[J]. Radiother Oncol, 2017,123(1):164-168. DOI: 10.1016/j.radonc.2017.01.020. [25] Li N, Noticewala SS, Williamson CW, et al.Feasibility of atlas-based active bone marrow sparing intensity modulated radiation therapy for cervical cancer[J]. Radiother Oncol, 2017,123(2):325-330. DOI: 10.1016/j.radonc.2017.02.017. [26] Lu S, Fan HQ, Hu XY, et al.Dosimetric comparison of helical tomotherapy, volume-modulated arc therapy, and fixed-field intensity-modulated radiation therapy in locally advanced nasopharyngeal carcinoma[J]. Front Oncol, 2021,11:764946. DOI: 10.3389/fonc.2021.764946. [27] Yu DY, Bai YL, Feng Y, et al.Which bone marrow sparing strategy and radiotherapy technology is most beneficial in bone marrow-sparing intensity modulated radiation therapy for patients with cervical cancer?[J]. Front Oncol, 2020,10:554241. DOI: 10.3389/fonc.2020.554241. [28] Song WY, Huh SN, Liang Y, et al.Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer[J]. J Appl Clin Med Phys, 2010,11(4):3255. DOI: 10.1120/jacmp.v11i4.3255. [29] Colaco RJ, Nichols RC, Huh S, et al.Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer[J]. J Gastrointest Oncol, 2014,5(1):3-8. DOI: 10.3978/j.issn.2078-6891.2013.041. [30] Lee J, Lin JB, Sun FJ, et al.Dosimetric predictors of acute haematological toxicity in oesophageal cancer patients treated with neoadjuvant chemoradiotherapy[J]. Br J Radiol, 2016,89(1066):20160350. DOI: 10.1259/bjr.20160350. [31] Barney CL, Scoville N, Allan E, et al.Radiation dose to the thoracic vertebral bodies is associated with acute hematologic toxicities in patients receiving concurrent chemoradiation for lung cancer: results of a single-center retrospective analysis[J]. Int J Radiat Oncol Biol Phys, 2018,100(3):748-755. DOI: 10.1016/j.ijrobp.2017.11.025. [32] Wang JY, Tian Y, Tang Y, et al.A phase II prospective nonrandomized trial of magnetic resonance imaging- guided hematopoietic bone marrow-sparing radiotherapy for gastric cancer patients with concurrent chemotherapy[J]. Onco Targets Ther, 2016,9:2701-2707. DOI: 10.2147/OTT.S91586. [33] Wang X, Tian Y, Tang Y, et al.Tomotherapy as an adjuvant treatment for gastroesophageal junction and stomach cancer may reduce bowel and bone marrow toxicity compared to intensity-modulated radiotherapy and volumetric-modulated arc therapy[J]. Oncotarget, 2017,8(24):39727-39735. DOI: 10.18632/oncotarget.14459. [34] Beavan M, Dundas K, Hudson F, et al.Feasibility of bone marrow sparing volumetric modulated arc therapy to spare active bone marrow in cervical and vaginal cancer patients: a retrospective dosimetric analysis[J]. J Med Radiat Sci, 2021,68(4):379-388. DOI: 10.1002/jmrs.529. [35] Franco P, Fiandra C, Arcadipane F, et al.Incorporating 18FDG-PET-defined pelvic active bone marrow in the automatic treatment planning process of anal cancer patients undergoing chemo-radiation[J]. BMC Cancer, 2017,17(1):710. DOI: 10.1186/s12885-017-3708-4. [36] Arcadipane F, Silvetti P, Olivero F, et al.Concurrent chemoradiation in anal cancer patients delivered with bone marrow-sparing IMRT: final results of a prospective phase II trial[J]. J Pers Med, 2021,11(5):427. DOI: 10.3390/jpm11050427.