[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on radio‐resistance mechanism of nasopharyngeal carcinoma
Yan Zhenyu1,2, Cao Xiang1,2, Hu Xinyu1,2, Ge Yizhi1, Zong Dan1, He Xia1,2
1The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research,Nanjing 210009,China; 2The Fourth School of Clinical Medicine,Nanjing Medical University,Nanjing 210000, China
Abstract Nasopharyngeal carcinoma is one of the most common malignant head and neck tumors, and radiotherapy is the main treatment. However, radio‐resistance is a key cause of local recurrence of nasopharyngeal carcinoma. Therefore, overcoming the radio‐resistance of nasopharyngeal carcinoma and enhancing the radiosensitivity have become urgent problems in the treatment of nasopharyngeal carcinoma, which also play a key role in improving the overall survival rate of patients. In this article, recent studies on DNA, non‐coding RNA (ncRNA), protein and cell behaviors related to radio‐resistance of nasopharyngeal carcinoma were reviewed, aiming to provide valuable ideas for clinical treatment of nasopharyngeal carcinoma.
Fund:National Natural Science Foundation of China (82172804); General Project of Jiangsu Cancer Hospital (ZM202022)
Corresponding Authors:
He Xia, Email: hexiabm@163.com
Cite this article:
Yan Zhenyu,Cao Xiang,Hu Xinyu et al. Research progress on radio‐resistance mechanism of nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2023, 32(3): 281-286.
Yan Zhenyu,Cao Xiang,Hu Xinyu et al. Research progress on radio‐resistance mechanism of nasopharyngeal carcinoma[J]. Chinese Journal of Radiation Oncology, 2023, 32(3): 281-286.
[1] Chen YP, Chan A, Le QT, et al.Nasopharyngeal carcinoma[J]. Lancet, 2019,394(10192):64-80. DOI: 10.1016/S0140-6736(19)30956-0. [2] Zhan YT, Fan SQ.Multiple mechanisms involving in radioresistance of nasopharyngeal carcinoma[J]. J Cancer, 2020,11(14):4193-4204. DOI: 10.7150/jca.39354. [3] Campion NJ, Ally M, Jank BJ, et al.The molecular march of primary and recurrent nasopharyngeal carcinoma[J]. Oncogene, 2021,40(10):1757-1774. DOI: 10.1038/s41388-020-01631-2. [4] Lord CJ, Ashworth A.The DNA damage response and cancer therapy[J]. Nature, 2012,481(7381):287-294. DOI: 10.1038/nature10760. [5] Zhang MX, Wang L, Zeng L, et al.LCN2 is a potential biomarker for radioresistance and recurrence in nasopharyngeal carcinoma[J]. Front Oncol, 2020,10:605777. DOI: 10.3389/fonc.2020.605777. [6] Wang WJ, Wu SP, Liu JB, et al.MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells[J]. Cancer Res, 2013,73(3):1219-1231. DOI: 10.1158/0008-5472.CAN-12-1408. [7] Wu HJ, Yu JH, Kong DSY, et al.Population and single-cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma[J]. Int J Oncol, 2019,55(6):1237-1248. DOI: 10.3892/ijo.2019.4897. [8] Moore LD, Le T, Fan G.DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013,38(1):23-38. DOI: 10.1038/npp.2012.112. [9] Wang S, Zhang R, Claret FX, et al.Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation[J]. Mol Cancer Ther, 2014,13(12):3163-3174. DOI: 10.1158/1535-7163.MCT-14-0317. [10] Lin YL, Zhou XH, Yang KF, et al.Protein tyrosine phosphatase receptor type D gene promotes radiosensitivity via STAT3 dephosphorylation in nasopharyngeal carcinoma[J]. Oncogene, 2021,40(17):3101-3117. DOI: 10.1038/s41388-021-01768-8. [11] Esteller M.Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011,12(12):861-874. DOI: 10.1038/nrg3074. [12] Zhou XH, Lin YL, Chen YT, et al.Epstein-Barr virus (EBV) encoded microRNA BART8-3p drives radioresistance-associated metastasis in nasopharyngeal carcinoma[J]. J Cell Physiol, 2021,236(9):6457-6471. DOI: 10.1002/jcp.30320. [13] Zhou XH, Zheng JL, Tang Y, et al. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway[J]. Biosci Rep, 2019,39(9):BSR20190415. DOI: 10.1042/BSR20190415. [14] Kalluri R, LeBleu VS. The biology, function,biomedical applications of exosomes[J]. Science, 2020,367(6478):eaau6977. DOI: 10.1126/science.aau6977. [15] Wan FZ, Chen KH, Sun YC, et al.Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma[J]. J Transl Med, 2020,18(1):12. DOI: 10.1186/s12967-019-02203-z. [16] Du T, Jiang JH, Chen YT, et al.MiR-138-1-3p alters the stemness and radiosensitivity of tumor cells by targeting CRIPTO and the JAK2/STAT3 pathway in nasopharyngeal carcinoma[J]. Ann Transl Med, 2021,9(6):485. DOI: 10.21037/atm-21-521. [17] Liu HX, Zheng W, Chen QP, et al.lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway[J]. Int J Mol Sci, 2021,22(3):1407. DOI: 10.3390/ijms22031407. [18] He Y, Jing YZ, Wei F, et al.Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma[J]. Cell Death Dis, 2018,9(2):235. DOI: 10.1038/s41419-018-0265-y. [19] Zhong QM, Chen YF, Chen ZL.LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis[J]. Cell Cycle, 2020,19(1):53-66. DOI: 10.1080/15384101.2019.1692176. [20] Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions[J]. Mol Cancer, 2018,17(1):48. DOI: 10.1186/s12943-018-0804-2. [21] Goodwin JF, Knudsen KE.Beyond DNA repair: DNA-PK function in cancer[J]. Cancer Discov, 2014,4(10):1126-1139. DOI: 10.1158/2159-8290.CD-14-0358. [22] Guo Z, Wang YH, Xu H, et al.LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma[J]. Cell Death Dis, 2021,12(1):69. DOI: 10.1038/s41419-020-03302-2. [23] Di MP, Wang M, Miao JJ, et al.CHAF1B induces radioresistance by promoting DNA damage repair in nasopharyngeal carcinoma[J]. Biomed Pharmacother, 2020,123:109748. DOI: 10.1016/j.biopha.2019.109748. [24] Li ZZ, Li N, Shen LF, et al.Quantitative proteomic analysis identifies MAPK15 as a potential regulator of radioresistance in nasopharyngeal carcinoma cells[J]. Front Oncol, 2018,8:548. DOI: 10.3389/fonc.2018.00548. [25] Wasinger VC, Cordwell SJ, Cerpa‐Poljak A, et al. Progress with gene-product mapping of the mollicutes: mycoplasma genitalium[J]. Electrophoresis, 1995,16(7):1090-1094. DOI: 10.1002/elps.11501601185. [26] Feng XP, Yi H, Li MY, et al.Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics[J]. Cancer Res, 2010,70(9):3450-3462. DOI: 10.1158/0008-5472.CAN-09-4099. [27] Wu P, Zhang H, Qi L, et al.Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy[J]. Oncol Rep, 2012,27(4):987-994. DOI: 10.3892/or.2011.1586. [28] Maiuri MC, Zalckvar E, Kimchi A, et al.Self-eating and self-killing: crosstalk between autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2007,8(9):741-752. DOI: 10.1038/nrm2239. [29] Cordon-Cardo C. Cancer stem cells[J]. Ann Oncol, 2010,21(suppl 7):vii93-94. DOI: 10.1093/annonc/mdq540. [30] Hafner A, Bulyk ML, Jambhekar A, et al.The multiple mechanisms that regulate p53 activity and cell fate[J]. Nat Rev Mol Cell Biol, 2019,20(4):199-210. DOI: 10.1038/s41580-019-0110-x. [31] Stewart-Ornstein J, Iwamoto Y, Miller MA, et al.p53 dynamics vary between tissues and are linked with radiation sensitivity[J]. Nat Commun, 2021,12(1):898. DOI: 10.1038/s41467-021-21145-z. [32] Lee JJ, Kim BC, Park MJ, et al.PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation[J]. Cell Death Differ, 2011,18(4):666-677. DOI: 10.1038/cdd.2010.139. [33] Qu CJ, Liang ZH, Huang JL, et al.MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN[J]. Cell Cycle, 2012,11(4):785-796. DOI: 10.4161/cc.11.4.19228. [34] Wang YW, Zhao MH, He SJ, et al.Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway[J]. J Exp Clin Cancer Res, 2019,38(1):461. DOI: 10.1186/s13046-019-1423-5. [35] Lei G, Zhang YL, Koppula P, et al.The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J]. Cell Res, 2020,30(2):146-162. DOI: 10.1038/s41422-019-0263-3. [36] Shintani T, Klionsky DJ.Autophagy in health and disease: a double-edged sword[J]. Science, 2004,306(5698):990-995. DOI: 10.1126/science.1099993. [37] Ke Y, Wu CY, Zeng YF, et al.Radiosensitization of clioquinol combined with zinc in the nasopharyngeal cancer stem-like cells by inhibiting autophagy in vitro and in vivo[J]. Int J Biol Sci, 2020,16(5):777-789. DOI: 10.7150/ijbs.40305. [38] Wang C, Yang YL, Sun LN, et al.Baicalin reverses radioresistance in nasopharyngeal carcinoma by downregulating autophagy[J]. Cancer Cell Int, 2020,20:35. DOI: 10.1186/s12935-020-1107-4. [39] Matthews HK, Bertoli C, de Bruin R. Cell cycle control in cancer[J]. Nat Rev Mol Cell Biol, 2022,23(1):74-88. DOI: 10.1038/s41580-021-00404-3. [40] Pawlik TM, Keyomarsi K.Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2004,59(4):928-942. DOI: 10.1016/j.ijrobp.2004.03.005. [41] Wang J, Chang LH, Lai XP, et al.Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells[J]. Cell Cycle, 2018,17(6):671-680. DOI: 10.1080/15384101.2017.1415679. [42] Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020,368(6487):eaaw5473. DOI: 10.1126/science.aaw5473. [43] Du QQ, Tan ZQ, Shi F, et al.PGC1α/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation[J]. Cancer Sci, 2019,110(6):2050-2062. DOI: 10.1111/cas.14011.