[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on Clarity system in external beam radiation therapy of prostate cancer
Li Yang1, Liu Mengyu1, Li Huixin2, Xu Hanzi1
1Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009,China; 2Women's Hospital of Nanjing Medical University, Nanjing 210004,China
Abstract External beam radiation therapy (EBRT) is one of the main treatments for prostate cancer, and image‐guided implementation of EBRT is more suitable for accurate radiotherapy. As a new type of image‐guided technology, the Clarity system has been applied in the real‐time tracking during EBRT for prostate cancer in clinical practice. While improving the accuracy of EBRT targeting, it also significantly reduces the side effects of traditional EBRT. In this article, the application of Clarity system in EBRT of prostate cancer and its existing problems were systematically elucidated.
Fund:Jiangsu Provincial Women and Children Health Research Project (F201762); Clinical Research Fund of the Spark Program for Precision Radiation, China International Medical Foundation (2019‐N‐11‐12); Jiangsu Province Association of Maternal and Child Health Grant (FYX202025)
Li Yang,Liu Mengyu,Li Huixin et al. Research progress on Clarity system in external beam radiation therapy of prostate cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 854-857.
Li Yang,Liu Mengyu,Li Huixin et al. Research progress on Clarity system in external beam radiation therapy of prostate cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 854-857.
[1] Alongi F, Cozzi L, Arcangeli S, et al.Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study[J]. Radiat Oncol, 2013, 8:171. DOI: 10.1186/1748‐717X‐8‐171. [2] Daşu A. Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials?[J]. Clin Oncol (R Coll Radiol), 2007, 19(5):289‐301. DOI: 10.1016/j.clon.2007.02.007. [3] Ballhausen H, Li M, Hegemann NS, et al. Intra‐fraction motion of the prostate is a random walk[J]. Phys Med Biol, 2015, 60(2):549‐563. DOI: 10.1088/0031‐9155/60/2/549. [4] O'Doherty UM, McNair HA, Norman AR, et al. Variability of bladder filling in patients receiving radical radiotherapy to the prostate[J]. Radiother Oncol, 2006, 79(3):335‐340. DOI: 10.1016/j.radonc.2006.05.007. [5] O'Shea T, Bamber J, Fontanarosa D, et al. Review of ultrasound image guidance in external beam radiotherapy part ii: intra‐fraction motion management and novel applications[J]. Phys Med Biol, 2016,61(8):R90‐137. DOI:10.1088/0031‐9155/61/8/R90. [6] Fiandra C, Guarneri A, Muñoz F, et al.Impact of the observers' experience on daily prostate localization accuracy in ultrasound‐based IGRT with the clarity platform[J]. J Appl Clin Med Phys, 2014, 15(4): 168-173. DOI: 10.1120/jacmp. v15i4.4795. [7] Fast MF, O'Shea TP, Nill S, et al. First evaluation of the feasibility of MLC tracking using ultrasound motion estimation[J]. Med Phys, 2016, 43(8):4628. DOI: 10.1118/1.4955440. [8] Ballhausen H, Hieber S, Li M, et al.Technical note: millimeter precision in ultrasound based patient positioning: experimental quantification of inherent technical limitations[J]. Med Phys, 2014, 41(8):081718. DOI: 10.1118/1.4890079. [9] Cury FL, Shenouda G, Souhami L, et al. Ultrasound‐based image guided radiotherapy for prostate cancer: comparison of cross‐modality and intramodality methods for daily localization during external beam radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006, 66(5):1562‐1567. DOI: 10.1016/j.ijrobp.2006.07.1375. [10] Lachaine M, Falco T.Intrafractional prostate motion management with the clarity autoscan system[J]. Med Phys Int, 2013, 1(1):72-80. [11] Salter BJ, Szegedi M, Tward J, et al.PO‐0895: 3D transperineal ultrasound image guidance methods for prostate SBRT radiotherapy treatment[J]. Radiother Oncol, 2015, 115:S460. DOI:10.1016/s0167‐8140(15)40887‐4. [12] Biston MC, Zaragori T, Delcoudert L, et al. Comparison of electromagnetic transmitter and ultrasound imaging for intrafraction monitoring of prostate radiotherapy[J]. Radiother Oncol, 2019, 136:1‐8. DOI: 10.1016/j.radonc.2019.03.020. [13] Yu AS, Najafi M, Hristov DH, et al. Intrafractional tracking accuracy of a transperineal ultrasound image guidance system for prostate radiotherapy[J]. Technol Cancer Res Treat, 2017, 16(6):1067‐1078. DOI: 10.1177/1533034617728643. [14] Richter A, Exner F, Weick S, et al. Evaluation of intrafraction prostate motion tracking using the clarity autoscan system for safety margin validation[J]. Z Med Phys, 2020, 30(2): 135‐141. DOI: 10.1016/j. zemedi. 2019.12.004. [15] Richardson AK, Jacobs P. Intrafraction monitoring of prostate motion during radiotherapy using the clarity(®) autoscan transperineal ultrasound (TPUS) system[J]. Radiography (Lond), 2017, 23(4):310‐313. DOI: 10.1016/j.radi.2017.07.003. [16] 高研, 赵波, 高献书, 等. 基于实时超声图像引导技术和线性判别模型分析前列腺癌放疗分次内运动模式[J]. 中华放射肿瘤学杂志, 2020, 29(6): 455‐460. DOI: 10.3760/cma.j.cn113030‐20200108‐00011. Gao Y, Zhao B, Gao XS, et al. Auto‐analysis intrafraction prostate movement patterns based on transperineal ultrasound real‐time tracking system and linear discriminant model[J].Chin J Radiat Oncol,2020,29(6):455‐460. DOI: 10.3760/cma.j.cn113030‐20200108‐00011. [17] Han B, Najafi M, Cooper DT, et al.Evaluation of transperineal ultrasound imaging as a potential solution for target tracking during hypofractionated radiotherapy for prostate cancer[J]. Radiat Oncol, 2018, 13(1):151. DOI: 10.1186/s13014‐018‐1097‐8. [18] Ricardi U, Franco P, Munoz F, et al. Three‐dimensional ultrasound‐based image‐guided hypofractionated radiotherapy for intermediate‐risk prostate cancer: results of a consecutive case series[J]. Cancer Invest, 2015, 33(2):23‐28. DOI: 10.3109/07357907.2014.988343. [19] De Bari B, Fiorentino A, Arcangeli S, et al. From radiobiology to technology: what is changing in radiotherapy for prostate cancer[J]. Expert Rev Anticancer Ther, 2014, 14(5):553‐564. DOI: 10.1586/14737140.2014.883282. [20] Ghilezan M, Yan D, Liang J, et al. Online image‐guided intensity‐modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5):1602‐1610. DOI: 10.1016/j.ijrobp.2004.07.709. [21] Yan H, Zhen X, Cerviño L, et al.Progressive cone beam CT dose control in image‐guided radiation therapy[J]. Med Phys, 2013, 40(6):060701. DOI: 10.1118/1.4804215. [22] Zucca S, Carau B, Solla I, et al. Prostate image‐guided radiotherapy by megavolt cone‐beam CT[J]. Strahlenther Onkol, 2011, 187(8):473‐478. DOI: 10.1007/s00066‐011‐2241‐7. [23] Li M, Ballhausen H, Hegemann NS, et al. Comparison of prostate positioning guided by three‐dimensional transperineal ultrasound and cone beam CT[J]. Strahlenther Onkol, 2017, 193(3):221‐228. DOI: 10.1007/s00066‐016‐1084‐7. [24] Cury F, Shenouda G, Souhami L, et al.Comparison of bat system and a new 3D trans‐abdominal ultrasound‐based image‐guided system for prostate daily localization during external beam radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2004, 60(1): S329. DOI: 10.1016/j. ijrobp. 2004.07.150. [25] Şen HT, Lediju Bell MA, Zhang Y, et al. System integration and preliminary in‐vivo experiments of a robot for ultrasound guidance and monitoring during radiotherapy[J]. Proc Int Conf Adv Robot, 2015, 2015:53‐59. DOI: 10.1109/ICAR.2015.7251433. [26] Lyons JA, Kupelian PA, Mohan DS, et al. Importance of high radiation doses (72 Gy or greater) in the treatment of stage t1‐t3 adenocarcinoma of the prostate[J]. Urology, 2000, 55(1):85‐90. DOI: 10.1016/s0090‐4295(99)00380‐5. [27] Litzenberg D, Dawson LA, Sandler H, et al. Daily prostate targeting using implanted radiopaque markers[J]. Int J Radiat Oncol Biol Phys, 2002, 52(3):699‐703. DOI: 10.1016/s0360‐3016(01)02654‐2. [28] van der Meer S, Bloemen‐van Gurp E, Hermans J, et al. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers[J]. Med Phys, 2013, 40(7):071707. DOI: 10.1118/1.4808359. [29] Johnston H, Hilts M, Beckham W, et al. 3D ultrasound for prostate localization in radiation therapy: a comparison with implanted fiducial markers[J]. Med Phys, 2008, 35(6):2403‐2413. [30] Igdem S, Akpinar H, Alço G, et al. Implantation of fiducial markers for image guidance in prostate radiotherapy: patient‐reported toxicity[J]. Br J Radiol, 2009, 82(983):941‐945. DOI: 10.1259/bjr/14201041. [31] Landry G, Reniers B, Lutgens L, et al. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers[J]. Med Phys, 2012, 39(3):1410‐1417. DOI: 10.1118/1.3685582. [32] Wang H, Balter J, Cao Y. Patient‐induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner[J]. Phys Med Biol, 2013, 58(3):465‐477. DOI: 10.1088/0031‐9155/58/3/465. [33] Whelan B, Gierman S, Holloway L, et al. A novel electron accelerator for MRI‐Linac radiotherapy[J]. Med Phys, 2016, 43(3):1285‐1294. DOI: 10.1118/1.4941309. [34] Abramowitz MC, Bossart E, Flook R, et al.Noninvasive real‐time prostate tracking using a transperineal ultrasound approach[J]. Int J Radiat Oncol Biol Phys, 2012, 84(3): S133. DOI: 10.1016/j. ijrobp. 2012.07.145 [35] Fontanarosa D, van der Meer S, Bloemen‐van Gurp E, et al. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites[J]. Med Phys, 2012, 39(8):5286‐5292. DOI: 10.1118/1.4737571. [36] Ullman KL, Ning H, Susil RC, et al.Intra‐ and inter‐radiation therapist reproducibility of daily isocenter verification using prostatic fiducial markers[J]. Radiat Oncol, 2006, 1:2. DOI: 10.1186/1748‐717X‐1‐2. [37] Kong V, Lockwood G, Yan J, et al. The effect of registration surrogate and patient factors on the interobserver variability of electronic portal image guidance during prostate radiotherapy[J]. Med Dosim, 2011, 36(4):337‐343. DOI: 10.1016/j.meddos.2010.07.005. [38] Grimwood A, Rivaz H, Zhou H, et al. Improving 3D ultrasound prostate localisation in radiotherapy through increased automation of interfraction matching[J]. Radiother Oncol, 2020, 149:134‐141. DOI: 10.1016/j.radonc.2020.04.044. [39] Dobler B, Mai S, Ross C, et al. Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition[J]. Strahlenther Onkol, 2006, 182(4):240‐246. DOI: 10.1007/s00066‐006‐1513‐0. [40] Ballhausen H, Ballhausen BD, Lachaine M, et al.Surface refraction of sound waves affects calibration of three‐dimensional ultrasound[J]. Radiat Oncol, 2015, 10:119. DOI: 10.1186/s13014‐015‐0424‐6. [41] Arcadipane F, Fiandra C, Franco P, et al. Three‐dimensional ultrasound‐based target volume delineation and consequent dose calculation in prostate cancer patients with bilateral hip replacement: a report of 4 cases[J]. Tumori, 2015, 101(5):e133‐137. DOI: 10.5301/tj.5000305. [42] Pang E, Knight K, Hussain A, et al. Reduction of intra‐fraction prostate motion ‐ determining optimal bladder volume and filling for prostate radiotherapy using daily 4D TPUS and CBCT[J]. Tech Innov Patient Support Radiat Oncol, 2018, 5:9‐15. DOI: 10.1016/j.tipsro.2018.01.003.