[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on the effect of radiotherapy of nasopharyngeal carcinoma and head and neck cancer on dental hard tissues and oral microbiota
Zhu Hualing1, Jiang Li2, Zou Ling1
1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; 2State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
Abstract Nasopharyngeal carcinoma and head and neck cancer are the most common malignant tumors in clinical practice. As the most common treatment for nasopharyngeal carcinoma and head and neck cancer, radiotherapy will inevitably cause damage to normal structures such as dental hard tissues and affect the composition of oral microbiota, although it exerts high inhibitory effect against tumor cells. To provide theoretical basis for preventing or reducing the side effects of nasopharyngeal carcinoma and head and neck cancer after radiotherapy and improving the quality of life in patients, related research progress on the effect of radiotherapy of nasopharyngeal carcinoma and head and neck cancer on dental hard tissues and oral microbiota was reviewed.
Corresponding Authors:
Zou Ling, Email: zouling@scu.edu.cn
Cite this article:
Zhu Hualing,Jiang Li,Zou Ling. Research progress on the effect of radiotherapy of nasopharyngeal carcinoma and head and neck cancer on dental hard tissues and oral microbiota[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 834-837.
Zhu Hualing,Jiang Li,Zou Ling. Research progress on the effect of radiotherapy of nasopharyngeal carcinoma and head and neck cancer on dental hard tissues and oral microbiota[J]. Chinese Journal of Radiation Oncology, 2022, 31(9): 834-837.
[1] Sroussi HY, Epstein JB, Bensadoun RJ, et al. Common oral complications of head and neck cancer radiation therapy: mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease,osteoradionecrosis[J]. Cancer Med, 2017, 6(12):2918‐2931. DOI: 10.1002/cam4.1221. [2] Schuurhuis JM, Stokman MA, Witjes MJ, et al. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens[J]. Oral Oncol, 2016, 58:32‐40. DOI: 10.1016/j.oraloncology.2016.05.005. [3] de Barros da Cunha SR, Fonseca FP, Ramos P, et al. Effects of different radiation doses on the microhardness, superficial morphology,mineral components of human enamel[J]. Arch Oral Biol,2017,80:130‐135.DOI:10.1016/j.archoralbio.2017.04.007. [4] McGuire JD, Walker MP, Dusevich V, et al. Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction[J]. Connect Tissue Res, 2014, 55 Suppl 1(1):33‐37. DOI: 10.3109/03008207.2014.923883. [5] Fonseca JM, Troconis CC, Palmier NR, et al. The impact of head and neck radiotherapy on the dentine‐enamel junction: a systematic review[J]. Med Oral Patol Oral Cir Bucal, 2020, 25(1):e96‐e105. DOI: 10.4317/medoral.23212. [6] Faria KM, Brandão TB, Ribeiro AC, et al. Micromorphology of the dental pulp is highly preserved in cancer patients who underwent head and neck radiotherapy[J]. J Endod, 2014, 40(10):1553‐1559. DOI: 10.1016/j.joen.2014.07.006. [7] Gomes‐Silva W, Prado Ribeiro AC, de Castro Junior G, et al. Head and neck radiotherapy does not increase gelatinase (metalloproteinase‐2 and ‐9) expression or activity in teeth irradiated in vivo[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017, 124(2):175‐182. DOI: 10.1016/j.oooo.2017. 04.009. [8] MacFarlane TW, Mason DK. Changes in the oral flora in sjögren's syndrome[J]. J Clin Pathol, 1974, 27(5):416‐419. DOI: 10.1136/jcp.27.5.416. [9] Bandara H, Panduwawala CP, Samaranayake LP. Biodiversity of the human oral mycobiome in health and disease[J]. Oral Dis, 2019, 25(2):363‐371. DOI: 10.1111/odi.12899. [10] Knychalska‐Karwan Z, Pawlicki R, Karwan T. Structural and microanalytical changes in dentition after radiotherapy applied in cases of tumour in the oral cavity region[J]. Folia Histochem Cytobiol, 1988, 26(1):25‐32. [11] Walker MP, Wichman B, Cheng AL, et al. Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients[J]. Pract Radiat Oncol, 2011, 1(3):142‐148. DOI: 10.1016/j.prro.2011.03.003. [12] Liang X, Zhang J, Peng G, et al. Radiation caries in nasopharyngeal carcinoma patients after intensity‐modulated radiation therapy: a cross‐sectional study[J]. J Dent Sci, 2016, 11(1):1‐7. DOI: 10.1016/j.jds.2015.09.003. [13] Lieshout HF, Bots CP. The effect of radiotherapy on dental hard tissue‐‐a systematic review[J]. Clin Oral Investig, 2014, 18(1):17‐24. DOI: 10.1007/s00784‐013‐1034‐z. [14] Palmier NR, Ribeiro A, Fonsêca JM, et al. Radiation‐related caries assessment through the international caries detection and assessment system and the post‐radiation dental index[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017, 124(6):542‐547. DOI: 10.1016/j.oooo.2017.08.019. [15] Kudkuli J, Abdulla R, Rekha PD, et al. Spectroscopic analyses reveal radiotherapy‐induced variations in elemental composition and crystallite properties of human permanent teeth enamel[J]. J Oral Biosci, 2019, 61(4):207‐214. DOI: 10.1016/j.job.2019.10.002. [16] Gonçalves LM, Palma‐Dibb RG, Paula‐Silva FW, et al. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth[J]. J Dent, 2014, 42(8):986‐992. DOI: 10.1016/j.jdent.2014.05.011. [17] Lu H, Zhao Q, Guo J, et al.Direct radiation‐induced effects on dental hard tissue[J]. Radiat Oncol, 2019, 14(1):5. DOI: 10.1186/s13014‐019‐1208‐1. [18] Seyedmahmoud R, Wang Y, Thiagarajan G, et al. Oral cancer radiotherapy affects enamel microhardness and associated indentation pattern morphology[J]. Clin Oral Investig, 2018, 22(4):1795‐1803. DOI: 10.1007/s00784‐017‐2275‐z. [19] Muñoz MA, Garín‐Correa C, González‐Arriagada W, et al. The adverse effects of radiotherapy on the structure of dental hard tissues and longevity of dental restoration[J]. Int J Radiat Biol, 2020, 96(7):910‐918. DOI: 10.1080/09553002.2020.1741718. [20] Velo M, Farha A, da Silva Santos PS, et al. Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro[J]. Clin Oral Investig, 2018, 22(8):2871‐2878. DOI: 10.1007/s00784‐018‐2373‐6. [21] Palmier NR, Migliorati CA, Prado‐Ribeiro AC, et al. Radiation‐related caries: current diagnostic, prognostic,management paradigms[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(1):52‐62. DOI: 10.1016/j.oooo.2020.04.003. [22] Reed R, Xu C, Liu Y, et al. Radiotherapy effect on nano‐mechanical properties and chemical composition of enamel and dentine[J]. Arch Oral Biol, 2015, 60(5):690‐697. DOI: 10.1016/j.archoralbio.2015.02.020. [23] Thiagarajan G, Vizcarra B, Bodapudi V, et al. Stress analysis of irradiated human tooth enamel using finite element methods[J]. Comput Methods Biomech Biomed Engin, 2017, 20(14):1533‐1542. DOI: 10.1080/10255842.2017.1383401. [24] McGuire JD, Gorski JP, Dusevich V, et al. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy[J]. J Dent Res, 2014, 93(10):1028‐1034. DOI: 10.1177/0022034514548221. [25] McGuire JD, Mousa AA, Zhang BJ, et al. Extracts of irradiated mature human tooth crowns contain MMP‐20 protein and activity[J]. J Dent, 2014, 42(5):626‐635. DOI: 10.1016/j.jdent.2014.02.013. [26] Gomes‐Silva W, Prado‐Ribeiro AC, Brandão TB, et al. Postradiation matrix metalloproteinase‐20 expression and its impact on dental micromorphology and radiation‐related caries[J]. Caries Res, 2017, 51(3):216‐224. DOI: 10.1159/000457806. [27] Chattopadhyay I, Verma M, Panda M.Role of oral microbiome signatures in diagnosis and prognosis of oral cancer[J]. Technol Cancer Res Treat, 2019, 18:1533033819867354. DOI: 10.1177/1533033819867354. [28] Siqueira JF, Rôças IN. The oral microbiota in health and disease: an overview of molecular findings[J]. Methods Mol Biol, 2017, 1537:127‐138. DOI: 10.1007/978‐1‐4939‐6685‐1_7. [29] Washio J, Takahashi N. Metabolomic studies of oral biofilm, oral cancer,beyond[J]. Int J Mol Sci, 2016, 17(6)DOI: 10.3390/ijms17060870. [30] Mager DL, Ximenez‐Fyvie LA, Haffajee AD, et al. Distribution of selected bacterial species on intraoral surfaces[J]. J Clin Periodontol, 2003, 30(7):644‐654. DOI: 10.1034/j.1600‐051x.2003.00376.x. [31] Gaetti‐Jardim E, Jardim E, Schweitzer CM, et al. Supragingival and subgingival microbiota from patients with poor oral hygiene submitted to radiotherapy for head and neck cancer treatment[J]. Arch Oral Biol, 2018, 90:45‐52. DOI: 10.1016/j.archoralbio.2018.01.003. [32] Meng L, Liu J, Peng B, et al. The persistence of streptococcus mutans in nasopharyngeal carcinoma patients after radiotherapy[J]. Caries Res, 2005, 39(6):484‐489. DOI: 10.1159/000088184. [33] Mougeot JC, Stevens CB, Almon KG, et al.Caries‐associated oral microbiome in head and neck cancer radiation patients: a longitudinal study[J]. J Oral Microbiol, 2019, 11(1):1586421. DOI: 10.1080/20002297.2019.1586421. [34] Hu YJ, Shao ZY, Wang Q, et al.Exploring the dynamic core microbiome of plaque microbiota during head‐and‐neck radiotherapy using pyrosequencing[J]. PLoS One, 2013, 8(2):e56343. DOI: 10.1371/journal.pone.0056343. [35] Gao L, Hu Y, Wang Y, et al. Exploring the variation of oral microbiota in supragingival plaque during and after head‐and‐neck radiotherapy using pyrosequencing[J]. Arch Oral Biol, 2015, 60(9):1222‐1230. DOI: 10.1016/j.archoralbio.2015.05.006. [36] Almståhl A, Finizia C, Carlén A, et al. Explorative study on mucosal and major salivary secretion rates, caries and plaque microflora in head and neck cancer patients[J]. Int J Dent Hyg, 2018, 16(4):450‐458. DOI: 10.1111/idh.12338. [37] Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome [J]. Nature, 2012, 486(7402): 207‐214. DOI: 10.1038/nature11234. [38] Arrifin A, Heidari E, Burke M, et al. The effect of radiotherapy for treatment of head and neck cancer on oral flora and saliva[J]. Oral Health Prev Dent, 2018, 16(5):425‐429. DOI: 10.3290/j.ohpd.a41364. [39] Xu Y, Teng F, Huang S, et al. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy[J]. Arch Oral Biol, 2014, 59(2):176‐186. DOI: 10.1016/j.archoralbio.2013.10.011. [40] Zhang J, Liu H, Liang X, et al.Investigation of salivary function and oral microbiota of radiation caries‐free people with nasopharyngeal carcinoma[J]. PLoS One, 2015, 10(4):e0123137. DOI: 10.1371/journal.pone.0123137. [41] Vesty A, Gear K, Biswas K, et al. Oral microbial influences on oral mucositis during radiotherapy treatment of head and neck cancer[J]. Support Care Cancer, 2020, 28(6):2683‐2691. DOI: 10.1007/s00520‐019‐05084‐6. [42] Zhu XX, Yang XJ, Chao YL, et al. The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma[J]. EBioMedicine, 2017, 18:23‐31. DOI: 10.1016/j.ebiom.2017.02.002. [43] Anjali K, Arun AB, Bastian TS, et al. Oral microbial profile in oral cancer patients before and after radiation therapy in a cancer care center ‐ a prospective study[J]. J Oral Maxillofac Pathol, 2020, 24(1):117‐124. DOI: 10.4103/jomfp.JOMFP_213_19. [44] Hou J, Zheng H, Li P, et al. Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy[J]. Radiother Oncol, 2018, 129(1):44‐51. DOI: 10.1016/j.radonc.2018.04.023. [45] Almståhl A, Finizia C, Carlén A, et al. Mucosal microflora in head and neck cancer patients[J]. Int J Dent Hyg, 2018, 16(4):459‐466. DOI: 10.1111/idh.12348.