[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on tryptophan metabolism involved by gut microbiota in the diagnosis and treatment of acute radiation‐induced intestinal injury
Zhao Tianshu, Cai Shang, Tian Ye
Department of Radiotherapy & Oncology, Second Affiliated Hospital of Soochow University/Institute of Radiotherapy & Oncology, Soochow University, Suzhou 215004, China
Abstract Gut microbiota not only affects the activity of tryptophan metabolism rate limiting enzymes in intestinal cells, but also cooperatively produces a variety of catalytic enzymes, which directly affects the type and quantity of tryptophan metabolites in the intestine. Multiple tryptophan‐associated indole compounds originating from the gut microbiome are significantly decreased in the peripheral blood of mice, and negatively correlated with radiation dose ranging from 2 to 10.4 Gy, which might be biomarkers for acute radiation‐induced intestinal injury. Recent studies have reported that indole 3‐propionic acid (IPA), indole‐3‐carboxaldehyde (I3A) and kynurenic acid (KYNA), which are tryptophan catabolites derived from gut microbiota, aryl hydrocarbon receptor, which is one of the receptors for tryptophan catabolites, and inhibition of indoleamine 2,3 dioxygenase‐1, which is a main rate‐limiting enzyme in intestinal tryptophan catabolism, can protect against radiation‐induced intestinal toxicity. A more comprehensive understanding of the dynamics of tryptophan catabolites and their roles in acute radiation‐induced intestinal injury is needed to deepen the understanding of the pathogenesis in radiation‐induced intestinal injury and exploration of effective diagnostic and therapeutic approaches.
Fund:Jiangsu Provincial Key Project (BE2018657); Jiangsu Medical Innovation Team (CXDT‐37); Medicine Outstanding Leader of Suzhou (62)
Corresponding Authors:
Tian Ye, Email: dryetian@126.com
Cite this article:
Zhao Tianshu,Cai Shang,Tian Ye. Research progress on tryptophan metabolism involved by gut microbiota in the diagnosis and treatment of acute radiation‐induced intestinal injury[J]. Chinese Journal of Radiation Oncology, 2022, 31(8): 750-753.
Zhao Tianshu,Cai Shang,Tian Ye. Research progress on tryptophan metabolism involved by gut microbiota in the diagnosis and treatment of acute radiation‐induced intestinal injury[J]. Chinese Journal of Radiation Oncology, 2022, 31(8): 750-753.
[1] Bosi A, Banfi D, Bistoletti M, et al.Tryptophan metabolites along the microbiota‐gut‐brain axis: An interkingdom communication system influencing the gut in health and disease[J]. Int J Tryptophan Res, 2020, 13:1178646920928984.DOI: 10.1177/1178646920928984. [2] Visconti A, Le Roy CI, Rosa F, et al.Interplay between the human gut microbiome and host metabolism[J]. Nat Commun, 2019,10(1):4505.DOI: 10.1038/s41467‐019‐12476‐z. [3] Roager HM, Licht TR.Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018,9(1):3294.DOI: 10.1038/s41467‐018‐05470‐4. [4] Agus A, Planchais J, Sokol H.Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe, 2018, 23(6): 716‐724.DOI: 10.1016/j.chom.2018.05.003. [5] Ó Broin P, Vaitheesvaran B, Saha S, et al.Intestinal microbiota‐derived metabolomic blood plasma markers for prior radiation injury[J]. Int J Radiat Oncol Biol Phys, 2015,91(2):360‐367.DOI: 10.1016/j.ijrobp.2014.10.023. [6] Guo H, Chou WC, Lai Y, et al.Multi‐omics analyses of radiation survivors identify radioprotective microbes and metabolites[J]. Science, 2020,370(6516)DOI: 10.1126/science.aay9097. [7] Xiao HW, Cui M, Li Y, et al.Gut microbiota‐derived indole 3‐propionic acid protects against radiation toxicity via retaining acyl‐CoA‐binding protein[J]. Microbiome, 2020,8(1):69.DOI: 10.1186/s40168‐020‐00845‐6. [8] 赵骅,陆雪,蔡恬静,等.基于代谢组学方法筛选大鼠血浆辐射敏感代谢物[J]. 癌变.畸变.突变,2020,32(3):166‐170,176.DOI: 10.3969/j.issn.1004‐616x.2020.03.002. Zhao H, Lu X, Cai TJ, et al.Screening for radiation‐sensitive biomarkers in rat plasma based on metabolomics studies[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2020,32(3):166‐170,176.DOI: 10.3969/j.issn.1004‐616x.2020.03.002. [9] Gronke K, Hernández PP, Zimmermann J, et al.Interleukin‐22 protects intestinal stem cells against genotoxic stress[J]. Nature, 2019,566(7743):249‐253.DOI: 10.1038/s41586‐019‐0899‐7. [10] Chen B, Alvarado DM, Iticovici M, et al.Interferon‐induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer[J]. Cancer Immunol Res, 2020,8(4):451‐464.DOI: 10.1158/2326‐6066.CIR‐19‐0282. [11] Taleb S.Tryptophan dietary impacts gut barrier and metabolic diseases[J]. Front Immunol, 2019,10:2113.DOI: 10.3389/fimmu.2019.02113. [12] Zelante T, Iannitti RG, Cunha C, et al.Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin‐22[J]. Immunity, 2013,39(2):372‐385.DOI: 10.1016/j.immuni.2013.08.003. [13] Islam J, Sato S, Watanabe K, et al.Dietary tryptophan alleviates dextran sodium sulfate‐induced colitis through aryl hydrocarbon receptor in mice[J]. J Nutr Biochem, 2017,42:43‐50.DOI: 10.1016/j.jnutbio.2016.12.019. [14] Martin‐Gallausiaux C, Larraufie P, Jarry A, et al.Butyrate produced by commensal bacteria down‐regulates indolamine 2,3‐dioxygenase 1 (IDO‐1) expression via a dual mechanism in human intestinal epithelial cells[J]. Front Immunol, 2018,9:2838.DOI: 10.3389/fimmu.2018.02838. [15] Reigstad CS, Salmonson CE, Rainey JF, et al.Gut microbes promote colonic serotonin production through an effect of short‐chain fatty acids on enterochromaffin cells[J]. FASEB J, 2015,29(4):1395‐1403.DOI: 10.1096/fj.14‐259598. [16] Engevik MA, Luck B, Visuthranukul C, et al.Human‐derived bifidobacterium dentium modulates the mammalian serotonergic system and gut‐brain axis[J]. Cell Mol Gastroenterol Hepatol, 2021,11(1):221‐248.DOI: 10.1016/j.jcmgh.2020.08.002. [17] Clarke G, Stilling RM, Kennedy PJ, et al.Minireview: gut microbiota: the neglected endocrine organ[J]. Mol Endocrinol, 2014,28(8):1221‐1238.DOI: 10.1210/me.2014‐1108. [18] Cui M, Xiao H, Li Y, et al.Faecal microbiota transplantation protects against radiation‐induced toxicity[J]. EMBO Mol Med, 2017,9(4):448‐461.DOI: 10.15252/emmm.201606932. [19] Casero D, Gill K, Sridharan V, et al.Space‐type radiation induces multimodal responses in the mouse gut microbiome and metabolome[J]. Microbiome, 2017,5(1):105.DOI: 10.1186/s40168‐017‐0325‐z. [20] Goudarzi M, Mak TD, Jacobs JP, et al.An integrated multi‐omic approach to assess radiation injury on the host‐microbiome axis[J]. Radiat Res, 2016,186(3):219‐234.DOI: 10.1667/RR14306.1. [21] Gerassy‐Vainberg S, Blatt A, Danin‐Poleg Y, et al.Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction[J]. Gut, 2018,67(1):97‐107.DOI: 10.1136/gutjnl‐2017‐313789. [22] Wang Z, Wang Q, Wang X, et al.Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. J Cell Mol Med, 2019,23(5):3747‐3756.DOI: 10.1111/jcmm.14289. [23] Ferreira MR, Muls A, Dearnaley DP, et al.Microbiota and radiation‐induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist[J]. Lancet Oncol, 2014,15(3):e139‐147.DOI: 10.1016/S1470‐2045(13)70504‐7. [24] Alexeev EE, Lanis JM, Kao DJ, et al.Microbiota‐derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin‐10 receptor[J]. Am J Pathol, 2018,188(5):1183‐1194.DOI: 10.1016/j.ajpath.2018.01.011. [25] Wang J, Wang P, Tian H, et al.Aryl hydrocarbon receptor/IL‐22/Stat3 signaling pathway is involved in the modulation of intestinal mucosa antimicrobial molecules by commensal microbiota in mice[J]. Innate Immun, 2018,24(5):297‐306.DOI: 10.1177/1753425918785016. [26] Wlodarska M, Luo C, Kolde R, et al.Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017,22(1):25‐37.e6.DOI: 10.1016/j.chom.2017.06.007. [27] Hou Q, Ye L, Liu H, et al.Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL‐22[J]. Cell Death Differ, 2018,25(9):1657‐1670.DOI: 10.1038/s41418‐018‐0070‐2. [28] Lamas B, Richard ML, Leducq V, et al.CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016,22(6):598‐605.DOI: 10.1038/nm.4102. [29] Ma Y, Wang Q, Yu K, et al.6‐Formylindolo(3,2‐b)carbazole induced aryl hydrocarbon receptor activation prevents intestinal barrier dysfunction through regulation of claudin‐2 expression[J]. Chem Biol Interact, 2018,288:83‐90.DOI: 10.1016/j.cbi.2018.04.020. [30] Schiering C, Wincent E, Metidji A, et al.Feedback control of AHR signalling regulates intestinal immunity[J]. Nature, 2017,542(7640):242‐245.DOI: 10.1038/nature21080. [31] Monteleone I, Rizzo A, Sarra M, et al.Aryl hydrocarbon receptor‐induced signals up‐regulate IL‐22 production and inhibit inflammation in the gastrointestinal tract[J]. Gastroenterology, 2011,141(1):237‐248, 248.e1.DOI: 10.1053/j.gastro.2011.04.007. [32] Goettel JA, Gandhi R, Kenison JE, et al.AHR activation is protective against colitis driven by T cells in humanized mice[J]. Cell Rep, 2016,17(5):1318‐1329.DOI: 10.1016/j.celrep.2016.09.082. [33] Alvarado DM, Chen B, Iticovici M, et al.Epithelial indoleamine 2,3‐dioxygenase 1 modulates aryl hydrocarbon receptor and notch signaling to increase differentiation of secretory cells and alter mucus‐associated microbiota[J]. Gastroenterology, 2019,157(4):1093‐1108.e11.DOI: 10.1053/j.gastro.2019.07.013. [34] Ciorba MA.Indoleamine 2,3 dioxygenase in intestinal disease[J]. Curr Opin Gastroenterol, 2013,29(2):146‐152.DOI: 10.1097/MOG.0b013e32835c9cb3. [35] Ciorba MA, Bettonville EE, McDonald KG, et al.Induction of IDO‐1 by immunostimulatory DNA limits severity of experimental colitis[J]. J Immunol, 2010,184(7):3907‐3916.DOI: 10.4049/jimmunol.0900291. [36] Shin JH, Lee YK, Shon WJ, et al.Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism‐dependent manner[J]. Eur J Nutr, 2020,59(8):3591‐3601.DOI: 10.1007/s00394‐020‐02194‐4. [37] Nikolaus S, Schulte B, Al‐Massad N, et al.Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases[J]. Gastroenterology, 2017,153(6):1504‐1516.e2.DOI: 10.1053/j.gastro.2017.08.028. [38] Sofia MA, Ciorba MA, Meckel K, et al.Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis[J]. Inflamm Bowel Dis, 2018, 24(7): 1471‐1480.DOI: 10.1093/ibd/izy103.