[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on bolus materials used for radiotherapy
Lu Ying1, Shi Qinying1, Wang Yong2, Huang Xiaobo3
1Tumour Center of Shanxi Bethune Hospital, Taiyuan 030031, China; 2Standard Measurement and Quality Inspection Institute of Taiyuan, Taiyuan 030012, China; 3Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract It is necessary to place bolus on skin to increase the surface dose when using high-energy rays to treat superficial lesions because of its build-up effect. It is well known that the set-up reproducibility of hand-made bolus is poor, and the main concern of commercialized bolus is the inadvertent air gap between the bolus and irregular skin. Owing to the advantage of making individualized and complex-shaped bolus, 3D-printing technology is playing an important role in making the bolus. The aim of this review is to summarize the current research status of hand-made, commercialized and 3D-printed bolus materials and future development trend of the bolus, providing reference for clinical application.
Lu Ying,Shi Qinying,Wang Yong et al. Research progress on bolus materials used for radiotherapy[J]. Chinese Journal of Radiation Oncology, 2022, 31(5): 488-492.
Lu Ying,Shi Qinying,Wang Yong et al. Research progress on bolus materials used for radiotherapy[J]. Chinese Journal of Radiation Oncology, 2022, 31(5): 488-492.
[1] Mihaylov IB, Penagaricano J, Moros EG. Quantification of the skin sparing effect achievable with high-energy photon beams when carbon fiber tables are used[J]. Radiother Oncol, 2009, 93(1):147-152. DOI:10.1016/j.radonc.2009.05.008. [2] Khan Y, Villarreal-Barajas JE, Udowicz M, et al. Clinical and dosimetric implications of air gaps between bolus and skin surface during radiation therapy[J]. J Cancer Ther, 2013, 04(07):1251-1255. [3] Adamson JD, Cooney T, Demehri F, et al. Characterization of water-clear polymeric gels for use as radiotherapy bolus[J]. Technol Cancer Res Treat, 2017, 16(6):923-929. DOI:10.1177/1533034617710579. [4] Saw CB, Wen BC, Anderson K, et al. Dosimetric considerations of water-based bolus for irradiation of extremities[J]. Med Dosim, 1998, 23(4):292-295. DOI:10.1016/s0958-3947(98)00033-8. [5] Jones KS. The conversion of air splints to provide buildup bolus in the treatment of extremities with skin involvement[J]. Med Dosim, 2000, 25(4):197-200. DOI:10.1016/s0958-3947(00)00051-0. [6] Haselow RE, Khan FM, Sharma SC, et al. Water bag bolus in external air cavities to produce dose homogeneity[J]. Int J Radiat Oncol Biol Phys, 1982, 8(1):137-139. DOI:10.1016/0360-3016(82)90399-6. [7] Benoit J, Pruitt AF, Thrall DE. Effect of wetness level on the suitability of wet gauze as a substitute for superflab as a bolus material for use with 6MV photons[J]. Vet Radiol Ultrasound, 2009, 50(5):555-559. DOI:10.1111/j.1740-8261.2009.01573.x. [8] Park JW, Yea JW. Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with kimura's disease involving the auricle[J]. Cancer Radiother, 2016, 20(3):205-209. DOI:10.1016/j.canrad.2015.11.003. [9] Vyas V, Palmer L, Mudge R, et al. On bolus for megavoltage photon and electron radiation therapy[J]. Med Dosim, 2013, 38(3):268-273. DOI:10.1016/j.meddos.2013.02.007. [10] Dubois D, Bice W, Bradford B, et al. Moldable tissue equivalent bolus for high-energy photon and electron therapy[J]. Med Phys, 1996, 23(9):1547-1549. DOI:10.1118/1.597820. [11] Babic S, Kerr AT, Westerland M, et al. Examination of jeltrate plus as a tissue equivalent bolus material[J]. J Appl Clin Med Phys, 2002, 3(3):170-175. DOI:10.1120/jacmp.V3i3.2560. [12] Fagerstrom JM. Dosimetric characterization of a rigid, surface-contour-specific thermoplastic bolus material[J]. Med Dosim, 2019, 44(4):401-404. DOI:10.1016/j.meddos.2019.02.005. [13] Visscher S, Barnett E. Comparison of bolus materials to highly absorbent polypropylene and rayon cloth[J]. J Med Imaging Radiat Sci, 2017, 48(1):55-60. DOI:10.1016/j.jmir.2016.08.003. [14] Healy E, Anderson S, Cui J, et al. Skin dose effects of postmastectomy chest wall radiation therapy using brass mesh as an alternative to tissue equivalent bolus[J]. Pract Radiat Oncol, 2013, 3(2):e45-53. DOI:10.1016/j.prro.2012.05.009. [15] 张敏, 赵波, 尹金鹏, 等. 新型3D打印组织补偿物的放疗应用研究[J]. 中华放射肿瘤学杂志, 2017, 26(2):210-214. DOI:10.3760/cma.j.issn.1004-4221.2017.02.018. Zhang M,Zhao B,Yin JP,et al. Application of new three-dimensional printed tissue compensators in radiotherapy[J]. Chin J Radiat Oncol, 2017, 26(2):210-214. DOI:10.3760/cma.j.issn.1004-4221.2017.02.018. [16] Ricotti R, Ciardo D, Pansini F, et al. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy[J]. Phys Med, 2017, 39:25-32. DOI:10.1016/j.ejmp.2017.06.004. [17] Verma TR, Painuly NK, Tyagi M, et al. Validation of the gel&wax boluses and comparison of their dosimetric performance with virtual bolus[J]. J Biomed Phys Eng, 2019, 9(6):629-636. DOI:10.31661/jbpe.V0i0.1177. [18] Park SY, Choi CH, Park JM, et al. A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy[J]. PLoS One, 2016, 11(12):e0168063. DOI:10.1371/journal.pone.0168063. [19] Ordonez-Sanz C, Bowles S, Hirst A, et al. A single plan solution to chest wall radiotherapy with bolus?[J]. Br J Radiol, 2014, 87(1037):20140035. DOI:10.1259/bjr.20140035. [20] Kong Y, Yan T, Sun Y, et al. A dosimetric study on the use of 3D-printed customized boluses in photon therapy:A hydrogel and silica gel study[J]. J Appl Clin Med Phys, 2019, 20(1):348-355. DOI:10.1002/acm2.12489. [21] Ehler E, Sterling D, Dusenbery K, et al. Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy:A pilot study[J]. PLoS One, 2018, 13(10):e0204944. DOI:10.1371/journal.pone.0204944. [22] Rooney MK, Rosenberg DM, Braunstein S, et al. Three-dimensional printing in radiation oncology:A systematic review of the literature[J]. J Appl Clin Med Phys, 2020, 21(8):15-26. DOI:10.1002/acm2.12907. [23] Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting:an overview[J]. Biomater Sci, 2018, 6(5):915-946. DOI:10.1039/c7bm00765e. [24] Baltz GC, Chi PM, Wong PF, et al. Development and validation of a 3D-printed bolus cap for total scalp irradiation[J]. J Appl Clin Med Phys, 2019, 20(3):89-96. DOI:10.1002/acm2.12552. [25] Robar JL, Moran K, Allan J, et al. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy[J]. Pract Radiat Oncol, 2018, 8(4):221-229. DOI:10.1016/j.prro.2017.12.008. [26] Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy[J]. J Appl Clin Med Phys, 2014, 15(4):4831. DOI:10.1120/jacmp.V15i4.4831. [27] Lukowiak M, Jezierska K, Boehlke M, et al. Utilization of a 3D printer to fabricate boluses used for electron therapy of skin lesions of the eye canthi[J]. J Appl Clin Med Phys, 2017, 18(1):76-81. DOI:10.1002/acm2.12013. [28] Kim SW, Shin HJ, Kay CS, et al. A customized bolus produced using a 3-dimensional printer for radiotherapy[J]. PLoS One, 2014, 9(10):e110746. DOI:10.1371/journal.pone.0110746. [29] Craft DF, Kry SF, Balter P, et al. Material matters:analysis of density uncertainty in 3D printing and its consequences for radiation oncology[J]. Med Phys, 2018, 45(4):1614-1621. DOI:10.1002/mp.12839. [30] Park JW, Oh SA, Yea JW, et al. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner[J]. PLoS One, 2017, 12(5):e0177562. DOI:10.1371/journal.pone.0177562. [31] Munoz L, Rijken J, Hunter M, et al. Investigation of elastomeric materials for bolus using stereolithography printing technology in radiotherapy[J]. Biomed Phys Eng Express, 2020, 6(4):045014. DOI:10.1088/2057-1976/ab9425. [32] 侯彦杰, 于江平, 王永强, 等. 3D打印胸壁硅胶bolus制作及临床前研究[J]. 中华放射肿瘤学杂志, 2018, 27(9):835-838. DOI:10.3760/cma.j.issn.1004-4221.2018.09.010. Hou YJ,Yu JP,Wang YQ,et al. Fabrication and pre-clinical application of specific 3D silicone rubber bolus chest wall[J]. Chin J Radiat Oncol,2018,27(9):835-838. DOI:10.3760/cma.j.issn.1004-4221.2018.09.010 [33] Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer[J]. Radiother Oncol, 2016, 121(1):148-153. DOI:10.1016/j.radonc.2016.07.011. [34] Shin I. Disposable bolus for radiotherapy:U. S. Patent 6,231,858 B1[P].2001-5-15 [35] Won Y, Kim J, Kwon K, et al. Application of patient-customized cast type M3 wax bolus using a 3D printing for photon beam radiation therapy in patients with scalp malignant tumor[J]. Iran J Med Phys, 2020,17:428-434. [36] Pinter C, Lasso A, Wang A, et al. SlicerRT:radiation therapy research toolkit for 3D slicer[J]. Med Phys, 2012, 39(10):6332-6338. DOI:10.1118/1.4754659. [37] Huang B, Hu R, Xue Z, et al. Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties[J]. Carbohydr Polym, 2020, 231:115736. DOI:10.1016/j.carbpol.2019.115736. [38] Schwartz JJ, Boydston AJ. Multimaterial actinic spatial control 3D and 4D printing[J]. Nat Commun, 2019, 10(1):791. DOI:10.1038/s41467-019-08639-7. [39] Guo J, Suma T, Richardson JJ, et al. Modular assembly of biomaterials using polyphenols as building blocks[J]. ACS Biomater Sci Eng, 2019, 5(11):5578-5596. DOI:10.1021/acsbiomaterials.8b01507. [40] Hou Y, Song Y, Sun X, et al. Multifunctional composite hydrogel bolus with combined self-healing, antibacterial and adhesive functions for radiotherapy[J]. J Mater Chem B, 2020, 8(13):2627-2635. DOI:10.1039/c9tb02967b. [41] Park JM, Son J, An HJ, et al. Bio-compatible patient-specific elastic bolus for clinical implementation[J]. Phys Med Biol, 2019, 64(10):105006. DOI:10.1088/1361-6560/ab1c93.