[an error occurred while processing this directive] | [an error occurred while processing this directive]
Preliminary study of stereotactic cardiac radioablation in radiotherapy of ventricular arrhythmia
Li Jing1, Chen Qingyong2, Li Guangjun1, Li Yan3, Zhang Yingjie1, Li Changhu1, Bai Long1, Zhong Renming1, He Yinbo1, Bai Sen1, Yang Qing2, Xu Feng3
1Department of Radiotherapy, Oncology Center, West China Hospital, Sichuan University, Chengdu 610041, China; 2Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China; 3Lung Cancer Center, WestChina Hospital, Sichuan University, Chengdu 610041, China
AbstractObjective To introduce the stereotactic cardiac radioablation (SCRA) based on the stereotactic body radiotherapy (SBRT), and comprehensively evaluate the new approach by short-term effectiveness and safety. Methods Patients with ventricular arrhythmia (VA) were evaluated and included in this clinical trial, who were immobilized by vacuum bag and performed simulation with 4-dimensional computed tomography (4DCT). In this study, the planning target volume (PTV) was set as the target to design a SBRT plan using volumetric modulated arc therapy (VMAT), which was evaluated by dose parameters such as R50%, homogeneity index and conformity index, etc. The results of Holter and echocardiography were monitored during the follow-up and compared with the data before treatment. Results Three subjects with ventricular tachycardia (VT) and one with premature ventricular contraction (PVC) received the same prescription of 25Gy in a single fraction. The average volume of PTV was 71.4cm3(60.3-89.4cm3). The average time of beam delivery was 12.0min (4.5-21.0min). And the short-term follow-up lasted for an average of 18 weeks (14-25 weeks), which showed significant decrease in both VT and PVC load without complications. Conclusion This study reports the implementation method of SCRA and proves its short-term effectiveness and safety, but the effects and standards of the key radiotherapy techniques still need to be explored.
Fund:National Natural Science Foundation of China (81972848);Cancer Precision Radiotherapy Spark Program of China International Medical Foundation (2019-N-11-04);Project of Science&Technology Department of Sichuan Province (2021YFS0143);Project of Science&Technology Department of Sichuan Province (2016JY0072)
Corresponding Authors:
Bai Sen, Email:baisen@scu.edu.cn;Yang Qing, Email:qingyang@scu.edu.cn;Xu Feng, Email:fengxuster@gmail.com
About author:: Li Jing, Chen Qingyong and Li Guangjun contributed equally to this article
Cite this article:
Li Jing,Chen Qingyong,Li Guangjun et al. Preliminary study of stereotactic cardiac radioablation in radiotherapy of ventricular arrhythmia[J]. Chinese Journal of Radiation Oncology, 2022, 31(3): 260-265.
Li Jing,Chen Qingyong,Li Guangjun et al. Preliminary study of stereotactic cardiac radioablation in radiotherapy of ventricular arrhythmia[J]. Chinese Journal of Radiation Oncology, 2022, 31(3): 260-265.
[1] 中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会.2020室性心律失常中国专家共识(2016共识升级版)[J]. 中国心脏起搏与心电生理杂志, 2020, 24(3):188-258. DOI:10.13333/j.cnki.cjcpe.2020.03.001. Chinese society of pacing and electrophysiology, Chinese society of arrhythmias. 2020 Chinese expert consensus statement on ventricular arrhythmias (2016 update)[J]. Chin J Cardiac Pacing Electrophysiol, 2020, 34(3):189-253. DOI:10.13333/j.cnki.cjcpe.2020.03.001. [2] Clauss S, Bleyer C, Schüttler D, et al. Animal models of arrhythmia:classic electrophysiology to genetically modified large animals[J]. Nat Rev Cardiol, 2019, 16(8):457-475. DOI:10.1038/s41569-019-0179-0. [3] Zei PC, Soltys S. Ablative radiotherapy as a noninvasive alternative to catheter ablation for cardiac arrhythmias[J]. Curr Cardiol Rep, 2017, 19(9):79. DOI:10.1007/s11886-017-0886-2. [4] Cuculich PS, Schill MR, Kashani R,et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia[J]. N Engl J Med, 2017, 377(24):2325-2336. DOI:10.1056/NEJMoa1613773. [5] Narducci ml, Cellini F, Placidi L, et al. Case report:a case report of stereotactic ventricular arrhythmia radioablation (star) on large cardiac target volume by highly personalized inter-and intra-fractional image guidance[J]. Front Cardiovasc Med, 2020, 7(1):565471. DOI:10.3389/fcvm.2020.565471. [6] Knutson NC, Samson PP, Hugo GD, et al. Radiation therapy workflow and dosimetric analysis from a phase 1/2 trial of noninvasive cardiac radioablation for ventricular tachycardia[J]. Int J Radiat Oncol Biol Phys, 2019, 104(5):1114-1123. DOI:10.1016/j.ijrobp.2019.04.005. [7] Prusator MT, Samson P, Cammin J, et al. Evaluation of motion compensation methods for noninvasive cardiac radioablation of ventricular tachycardia[J]. Int J Radiat Oncol Biol Phys, 2021, 111(4):1023-1032. DOI:10.1016/j.ijrobp.2021.06.035. [8] Lydiard PGDip S, Blanck O, Hugo G, et al. A review of cardiac radioablation (cr) for arrhythmias:procedures, technology, and future opportunities[J]. Int J Radiat Oncol Biol Phys, 2021, 109(3):783-800. DOI:10.1016/j.ijrobp.2020.10.036. [9] Hanna GG, Murray L, Patel R, et al. UK consensus on normal tissue dose constraints for stereotactic radiotherapy[J]. Clin Oncol (R Coll Radiol), 2018, 30(1):5-14. DOI:10.1016/j.clon.2017.09.007. [10] Chen L, Bai S, Li G, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique[J]. Radiat Oncol, 2020, 15(1):170. DOI:10.1186/s13014-020-01611-6. [11] Robinson CG, Samson PP, Moore KMS, et al. Phase Ⅰ/Ⅱ trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia[J]. Circulation, 2019, 139(3):313-321. DOI:10.1161/CIRCULATIONAHA.118.038261. [12] Brett CL, Cook JA, Aboud AA, et al. Novel workflow for conversion of catheter-based electroanatomic mapping to DICOM imaging for noninvasive radioablation of ventricular tachycardia[J]. Pract Radiat Oncol, 2021, 11(1):84-88. DOI:10.1016/j.prro.2020.04.006. [13] Hohmann S, Henkenberens C, Zormpas C, et al. A novel open-source software-based high-precision workflow for target definition in cardiac radioablation[J]. J Cardiovasc Electrophysiol, 2020, 31(10):2689-2695. DOI:10.1111/jce.14660. [14] Neuwirth R, Cvek J, Knybel L, et al. Stereotactic radiosurgery for ablation of ventricular tachycardia[J]. Europace, 2019, 21(7):1088-1095. DOI:10.1093/europace/euz133. [15] Lloyd MS, Wight J, Schneider F, et al. Clinical experience of stereotactic body radiation for refractory ventricular tachycardia in advanced heart failure patients[J]. Heart Rhythm, 2020, 17(3):415-422. DOI:10.1016/j.hrthm.2019.09.028. [16] Munshi A. Ablative radiosurgery for cardiac arrhythmias–A systematic review[J]. Cancer Radiother, 2021, 25(4):373-379. DOI:10.1016/j.canrad.2021.01.009. [17] Guckenberger M, Klement RJ, Allgáuer M, et al. Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy[J]. Radiother Oncol, 2016, 118(3):485-491. DOI:10.1016/j.radonc.2015.09.008. [18] Gianni C, Rivera D, Burkhardt JD, et al. Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia[J]. Heart Rhythm, 2020, 17(8):1241-1248. DOI:10.1016/j.hrthm.2020.02.036.