[an error occurred while processing this directive] | [an error occurred while processing this directive]
Application and basic application process of MR accelerator in lung cancer
Wang Jianyang1, Xiao Xi1,2, Yan Lingling1, Cao Ying1, Men Kuo1, Bi Nan1
1Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; 2Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China
Abstract Radiotherapy is one of the most important components of cancer treatment. Image-guided radiotherapy (IGRT) is the mainstream tool in the precision radiation oncology. Magnetic resonance (MR) accelerator can perform MRI for tumors during radiotherapy, deliver real-time tracing and monitoring of tumors and thus realize the MRI-guided adaptive radiotherapy. Here,the latest research status and clinical application of MR accelerator in lung cancer were reviewed.
Fund:National Natural Science Foundation of China (82071759);Beijing Marathon of Hope, Cancer Foundation of China (LC2020A14)
Corresponding Authors:
Bi Nan,binan_email@163.com;Men Kuo,menkuo126@126.com
About author:: Wang Jianyang and Xiao Xi contributed equally to this article
Cite this article:
Wang Jianyang,Xiao Xi,Yan Lingling et al. Application and basic application process of MR accelerator in lung cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(1): 24-28.
Wang Jianyang,Xiao Xi,Yan Lingling et al. Application and basic application process of MR accelerator in lung cancer[J]. Chinese Journal of Radiation Oncology, 2022, 31(1): 24-28.
[1] 黄伟,Li XA,李宝生. MRI引导的自适应放疗技术进展[J]. 中华放射肿瘤学杂志,2017, 26(7):819-822. DOI:10.3760/cma.j.issn.1004-4221.2017.07.021.
HUANG W, LI XA, LI BS. Advances in magnetic resonance imaging-guided adaptive radiotherapy[J]. Chin J Radiat Oncol, 2017, 26(7):819-822. DOI:10.3760/cma.j.issn.1004-4221.2017.07.021.
[2] 毛玲丽,刘红冬,阳露,等. MRI引导放疗设备研究进展[J]. 中国医学影像技术,2019, 35(4):605-609. DOI:10.13929/j.1003-3289.201810164.
MAO LL, LIU HD, YANG L, et al. Research progresses of MRI-guided radiotherapy equipmen[J]. Chin J Med Imaging Technol, 2019, 35(4):605-609. DOI:10.13929/j.1003-3289.201810164.
[3] CRIJNS S, RAAYMAKERS B. From static to dynamic 1.5 T MRI-linac prototype:impact of gantry position related magnetic field variation on image fidelity[J]. Phys Med Biol, 2014, 59(13):3241-3247. DOI:10.1088/0031-9155/59/13/3241.
[4] LAGENDIJK JJ, RAAYMAKERS BW, VAN VULPEN M. The magnetic resonance imaging-linac system[J]. Semin Radiat Oncol, 2014, 24(3):207-209. DOI:10.1016/j.semradonc.2014.02.009.
[5] OBORN BM, GE Y, HARDCASTLE N, et al. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields:a Monte Carlo based planning study[J]. Med Phys, 2016, 43(1):368. DOI:10.1118/1.4938580.
[6] OBORN BM, GARGETT MA, CAUSER TJ, et al. Experimental verification of dose enhancement effects in a lung phantom from inline magnetic fields[J]. Radiother Oncol, 2017, 125(3):433-438. DOI:10.1016/j.radonc.2017.09.012.
[7] PRIOR P, CHEN X, BOTROS M, et al. MRI-based IMRT planning for MR-linac:comparison between CT-and MRI-based plans for pancreatic and prostate cancers[J]. Phys Med Biol, 2016, 61(10):3819-3842. DOI:10.1088/0031-9155/61/10/3819.
[8] WHITE DR, GRIFFITH RV, WILSON IJ. Report 46[J]. J Int Commiss Radiat Units Measur, 2016, 24(1):NP. DOI:10.1093/jicru/os24.1. Report46.
[9] KöHLER M, VAARA T, VAN GROOTEL M, et al. MR-only simulation for radiotherapy planning—white paper:Philips MRCAT for prostate dose calculations using only MRI data[Z]. Koninklijke Philips N. V., 2015.
[10] WANG L, HOOGCARSPEL SJ, WEN Z, et al. Biological responses of human solid tumor cells to X-ray irradiation within a 1.5-Tesla magnetic field generated by a magnetic resonance imaging-linear accelerator[J]. Bioelectromagnetics, 2016, 37(7):471-480. DOI:10.1002/bem.21991.
[11] CHEN GX, WANG MH, ZHENG T, et al. Diffusion-weighted magnetic resonance imaging for the detection of metastatic lymph nodes in patients with lung cancer:a meta-analysis[J]. Mol Clin Oncol, 2017, 6(3):344-354. DOI:10.3892/mco.2017.1153.
[12] LU ZX, ZHAO ZH, WANG DD, et al. The correlation between the cell density of local advanced lung cancer tumor and the ADC value of 3.0 T MRI diffusion weighted imaging[J]. Chin Med J, 2018, 98(41):3332-3335. DOI:10.3760/cma.j.issn.0376-2491.2018.41.008.
[13] 关祥祯,王军,柴瑞平,等. MR对伴阻塞性肺不张的中心型肺癌精确放疗靶区勾画的价值[J]. 医学影像学杂志,2019, 29(9):1487-1490.
GUAN XZ, WANG J, CHAI RP, et al. The application value of MR images in precise radiotherapy target delineation for central-type lung cancer with obstructive atelectasis[J]. J Med Imaging, 2019, 29(9):1487-1490.
[14] 赵丹,余荣,胡俏俏,等. 肺癌伴肺不张者放疗前MRI与CT模拟定位比较研究[J]. 中华放射肿瘤学杂志,2016, 25(2):158-163. DOI:10.3760/cma.j.issn.1004-4221.2016.02.016.
ZHAO D, YU R, HU QQ,et al. Using MRI simulation in radiotherapy of lung cancer with post-obstructive lobar collapse:a preliminary study[J]. Chin J Radiat Oncol, 2016, 25(2):158-163. DOI:10.3760/cma.j.issn.1004-4221.2016.02.016.
[15] BAINBRIDGE HE, MENTEN MJ, FAST MF, et al. Treating locally advanced lung cancer with a 1.5T MR-linac-effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy[J]. Radiother Oncol, 2017, 125(2):280-285. DOI:10.1016/j.radonc.2017.09.009.
[16] MENTEN MJ, FAST MF, NILL S, et al. Lung stereotactic body radiotherapy with an MR-linac-quantifying the impact of the magnetic field and real-time tumor tracking[J]. Radiother Oncol, 2016, 119(3):461-466. DOI:10.1016/j.radonc.2016.04.019.
[17] ALNAGHY SJ, BEGG J, CAUSER T, et al. Technical note:penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T MRI-linac prototypes[J]. Med Phys, 2018, 45(1):479-487. DOI:10.1002/mp.12680.
[18] GE Y, O'BRIEN RT, SHIEH CC, et al. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator[J]. Med Phys, 2014, 41(6):061703. DOI:10.1118/1.4873682.
[19] AL-WARD SM, KIM A, MCCANN C, et al. The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac[J]. J Appl Clin Med Phys, 2018, 19(1):145-155. DOI:10.1002/acm2.12233.
[20] LIU P, DONG B, NGUYEN DT, et al. First experimental investigation of simultaneously tracking two independently moving targets on an MRI-linac using real-time MRI and MLC tracking[J]. Med Phys, 2020, 47(12):6440-6449. DOI:10.1002/mp.14536.
[21] UIJTEWAAL P, BORMAN P, WOODHEAD PL, et al. Dosimetric evaluation of MRI-guided multi-leaf collimator tracking and trailing for lung stereotactic body radiation therapy[J]. Med Phys, 2021, 48(4):1520-1532. DOI:10.1002/mp.14772.
[22] CERVINO LI, DU J, JIANG SB. MRI-guided tumor tracking in lung cancer radiotherapy[J]. Phys Med Biol, 2011, 56(13):3773-3785. DOI:10.1088/0031-9155/56/13/003.
[23] SHI X, DIWANJI T, MOONEY KE, et al. Evaluation of template matching for tumor motion management with cine-MR images in lung cancer patients[J]. Med Phys, 2014, 41(5):052304. DOI:10.1118/1.4870978.
[24] CROCKETT CB, SAMSON P, CHUTER R, et al. Initial clinical experience of MR-guided radiotherapy for non-small cell lung cancer[J]. Front Oncol, 2021, 11:617681. DOI:10.3389/fonc.2021.617681.
[25] PADGETT KR, SIMPSON GN, LLORENTE R, et al. Feasibility of adaptive MR-guided stereotactic body radiotherapy (SBRT) of lung tumors[J]. Cureus, 2018, 10(4):e2423. DOI:10.7759/cureus.2423.
[26] FINAZZI T, HAASBEEK C, SPOELSTRA F, et al. Clinical outcomes of stereotactic MR-Guided adaptive radiation therapy for high-risk lung tumors[J]. Int J Radiat Oncol Biol Phys, 2020, 107(2):270-278. DOI:10.1016/j.ijrobp.2020.02.025.
[27] MENTEN MJ, WETSCHEREK A, FAST MF. MRI-guided lung SBRT:present and future developments[J]. Phys Med, 2017, 44:139-149. DOI:10.1016/j.ejmp.2017.02.003.
[28] PARK JM, PARK SY, KIM HJ, et al. A comparative planning study for lung SABR between tri-Co-60 magnetic resonance image guided radiation therapy system and volumetric modulated arc therapy[J]. Radiother Oncol, 2016, 120(2):279-285. DOI:10.1016/j.radonc.2016.06.013.
[29] KIM E, WU HG, PARK JM, et al. Lung density change after SABR:A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator[J/OL]. PLoS One, 2018, 13(4):e0195196. DOI:10.1371/journal.pone.0195196.
[30] 李振江,李成强,李玉坤,等. 基于MR引导放疗系统肺癌SBRT初步临床应用[J]. 中华放射肿瘤学杂志,2021, 30(2):140-145. DOI:10.3760/cma.j.cn113030-20200429-00222.
LI ZJ, LI CQ, LI YK, et al. Preliminary clinical application of stereotactic body radiotherapy (SBRT) for lung cancer based on MRI-guided radiotherapy system[J]. Chin J Radiat Oncol, 2021, 30(2):140-145. DOI:10.3760/cma.j.cn113030-20200429-00222.
[31] 刘镖水,郭旋,丁寿亮,等. MR引导的放疗系统临床应用[J]. 中华放射肿瘤学杂志,2021, 30(2):134-139. DOI:10.3760/cma.j.cn113030-20200317-00118.
LIU BS, GUO X, DING SL,et al. The clinical application of magnetic resonance-guided radiotherapy[J]. Chin J Radiat Oncol, 2021, 30(2):134-139. DOI:10.3760/cma.j.cn113030-20200317-00118.
[32] NYHOLM T, JONSSON J. Counterpoint:opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow[J]. Semin Radiat Oncol, 2014, 24(3):175-180. DOI:10.1016/j.semradonc.2014.02.005.