[an error occurred while processing this directive] | [an error occurred while processing this directive]
The standard adapt-to-shape workflow for prostate cancer on MR-linac—Experience from National Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences
Lu Ningning, Tian Yuan, Qin Shirui, Chen Jiayun, Wang Shulian, Li Yexiong
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract With aligned MR registration, the MR-Linac provides superior soft tissue resolution for prostate cancer. No fiducial markers or electromagnetic transponders insertion is needed to guarantee high-precision radiotherapy. The highly-recommended Adapt-To-Shape (ATS) workflow can resolve all the problems encountered during prostate cancer radiotherapy, including prostate volume changes and adjacent organs motion, both inter-fractionally and intra-fractionally. With all the above advantages, MR-Linac performs outstandingly than conventional linac in prostate cancer RT delivery, and probably helps us to reduce the CTV-PTV margin safely in the near future.Nevertheless, it is difficult to implement the ATS workflow in clinical practice. In this article, the standard ATS workflow for prostate cancer was summarized based on our own experience.
Fund:Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences, Longevity and Health Project(2021-JKCS-003); National Natural Science Foundation of China(12105368)
Corresponding Authors:
Li Yexiong, Email:yexiong12@163.com
Cite this article:
Lu Ningning,Tian Yuan,Qin Shirui et al. The standard adapt-to-shape workflow for prostate cancer on MR-linac—Experience from National Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences[J]. Chinese Journal of Radiation Oncology, 2022, 31(1): 15-19.
Lu Ningning,Tian Yuan,Qin Shirui et al. The standard adapt-to-shape workflow for prostate cancer on MR-linac—Experience from National Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences[J]. Chinese Journal of Radiation Oncology, 2022, 31(1): 15-19.
[1] NICHOLS EM, DHOPLE AA, MOHIUDDIN MM,et al. Comparative analysis of the post-lumpectomy target volume versus the use of pre-lumpectomy tumor volume for early-stage breast cancer:implications for the future[J]. Int J Radiat Oncol Biol Phys, 2010, 77(1):197-202. DOI:10.1016/j.ijrobp.2009.04.063.
[2] ALçO G, IGDEM S, OKKAN S, et al. Replacement of the tumor bed following oncoplastic breast-conserving surgery with immediate latissimus dorsi mini-flap[J]. Mol Clin Oncol, 2016, 5(4):365-371. DOI:10.3892/mco.2016.984.
[3] VASMEL JE, GROOT KOERKAMP ml, KIRBY AM, et al. Consensus on contouring primary breast tumors on MRI in the setting of neoadjuvant partial breast irradiation in trials[J]. Pract Radiat Oncol, 2020, 10(6):e466-e474. DOI:10.1016/j.prro.2020.03.011.
[4] HORTON JK, BLITZBLAU RC, YOO S, et al. Preoperative single-fraction partial breast radiation therapy:a novel phase 1, dose-escalation protocol with radiation response biomarkers[J]. Int J Radiat Oncol Biol Phys, 2015, 92(4):846-855. DOI:10.1016/j.ijrobp.2015.03.007.
[5] GROOT-KOERKAMP ml, VASMEL JE, RUSSELL NS, et al. Optimizing MR-guided radiotherapy for breast cancer patients[J]. Front Oncol, 2020, 10:1107. DOI:10.3389/fonc.2020.01107.
[6] DEN HARTOGH MD, PHILIPPENS ME, VAN DAM IE, et al. MRI and CT imaging for preoperative target volume delineation in breast-conserving therapy[J]. Radiat Oncol, 2014, 9:63. DOI:10.1186/1748-717X-9-63.
[7] BONDIAU PY, COURDI A, BAHADORAN P, et al. Phase 1 clinical trial of stereotactic body radiation therapy concomitant with neoadjuvant chemotherapy for breast cancer[J]. Int J Radiat Oncol Biol Phys, 2013, 85(5):1193-1199. DOI:10.1016/j.ijrobp.2012.10.034.
[8] BOSMA S, LEIJ F, VREESWIJK S, et al. Five-year results of the preoperative accelerated partial breast irradiation (PAPBI) trial[J]. Int J Radiat Oncol Biol Phys, 2020, 106(5):958-967. DOI:10.1016/j.ijrobp.2019.12.037.
[9] NICHOLS E, KESMODEL SB, BELLAVANCE E, et al. Preoperative accelerated partial breast irradiation for early-stage breast cancer:preliminary results of a prospective, phase 2 trial[J]. Int J Radiat Oncol Biol Phys, 2017, 97(4):747-753. DOI:10.1016/j.ijrobp.2016.11.030.
[10] VASMEL JE, CHARAGHVANDI RK, HOUWELING AC, et al. Tumor response after neoadjuvant magnetic resonance guided single ablative dose partial breast irradiation[J]. Int J Radiat Oncol Biol Phys, 2020, 106(4):821-829. DOI:10.1016/j.ijrobp.2019.11.406.
[11] GUIDOLIN K, YAREMKO B, LYNN K, et al. Stereotactic image-guided neoadjuvant ablative single-dose radiation, then lumpectomy, for early breast cancer:the SIGNAL prospective single-arm trial of single-dose radiation therapy[J]. Curr Oncol, 2019, 26(3):e334-e340. DOI:10.3747/co.26.4479.
[12] NACHBAR M,MöNNICH D, BOEKE S, et al. Partial breast irradiation with the 1.5 T MR-Linac:First patient treatment and analysis of electron return and stream effects[J]. Radiother Oncol, 2020, 145:30-35. DOI:10.1016/j.radonc.2019.11.025.
[13] BERLANGIERI A, ELLIOTT S, WASIAK J, et al. Use of magnetic resonance image-guided radiotherapy for breast cancer:a scoping review[J]. J Med Radiat Sci, 2021. DOI:10.1002/jmrs.545.
[14] PRICE AT, KENNEDY WR, HENKE LE, et al. Implementing stereotactic accelerated partial breast irradiation using magnetic resonance guided radiation therapy[J]. Radiother Oncol, 2021, S0167-8140(21)06746-3. DOI:10.1016/j.radonc.2021.09.023.
[15] GROOT-KOERKAMP ml, DE HOND Y, MASPERO M, et al. Synthetic CT for single-fraction neoadjuvant partial breast irradiation on an MRI-linac[J]. Phys Med Biol, 2021, 66(8). DOI:10.1088/1361-6560/abf1ba.
[16] DE-COLLE C, NACHBAR M,MöNNICH D, et al. Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator[J]. Clin Transl Radiat Oncol, 2021, 27:103-108. DOI:10.1016/j.ctro.2020.12.005.
[17] KENNEDY WR, THOMAS MA, STANLEY JA, et al. Single-institution phase 1/2 prospective clinical trial of single-fraction, high-gradient adjuvant partial-breast irradiation for hormone sensitive stage 0-I breast cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(2):344-352. DOI:10.1016/j.ijrobp.2020.02.021.
[18] VAN HEIJST TC, DEN HARTOGH MD, LAGENDIJK JJ, et al. MR-guided breast radiotherapy:feasibility and magnetic-field impact on skin dose[J]. Phys Med Biol, 2013, 58(17):5917-5930. DOI:10.1088/0031-9155/58/17/5917.
[19] ESMAEELI AD, MAHDAVI SR, POULADIAN M, et al. Improvement of dose distribution in breast radiotherapy using a reversible transverse magnetic field Linac-MR unit[J]. Med Phys, 2014, 41(1):011709. DOI:10.1118/1.4845175.
[20] CHEN X, PRIOR P, CHEN GP, et al. Technical Note:Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy[J]. Med Phys, 2016, 43(8):4797. DOI:10.1118/1.4959534.
[21] KIM A, LIM-REINDERS S, MCCANN C, et al. Magnetic field dose effects on different radiation beam geometries for hypofractionated partial breast irradiation[J]. J Appl Clin Med Phys, 2017, 18(6):62-70. DOI:10.1002/acm2.12182.
[22] PARK JM, SHIN KH, KIM JI, et al. Air-electron stream interactions during magnetic resonance IGRT:Skin irradiation outside the treatment field during accelerated partial breast irradiation[J]. Strahlenther Onkol, 2018, 194(1):50-59. DOI:10.1007/s00066-017-1212-z.
[23] SCHMITZ AC, VAN DEN BOSCH MA, LOO CE, et al. Precise correlation between MRI and histopathology-exploring treatment margins for MRI-guided localized breast cancer therapy[J]. Radiother Oncol, 2010, 97(2):225-232. DOI:10.1016/j.radonc.2010.07.025.
[24] SCHMITZ AC, PENGEL KE, LOO CE, et al. Pre-treatment imaging and pathology characteristics of invasive breast cancers of limited extent:potential relevance for MRI-guided localized therapy[J]. Radiother Oncol, 2012, 104(1):11-18. DOI:10.1016/j.radonc.2012.04.014.
[25] TRUONG PT, LESPERANCE M, CULHACI A, et al. Patient subsets with T1-T2, node-negative breast cancer at high locoregional recurrence risk after mastectomy[J]. Int J Radiat Oncol Biol Phys, 2005, 62(1):175-182. DOI:10.1016/j.ijrobp.2004.09.013.
[26] ROSEN PP, GROSHEN S, KINNE DW, et al. Factors influencing prognosis in node-negative breast carcinoma:analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up[J]. J Clin Oncol, 1993, 11(11):2090-2100. DOI:10.1200/JCO.1993.11.11.2090.