[an error occurred while processing this directive] | [an error occurred while processing this directive]
Practice and prospect of radiotherapy and immunotherapy for lung cancer
Shang Shijie1, Chen Dawei1,2,3, An Cui4, Wang Ruiyang3, Wu Meng2, Yu Jinming2,3
1Cheeloo College of Medicine,Shandong University, Ji'nan 250012, China; 2Laboratory of Radioimmunoassay, Affiliated Tumor Hospital of Shandong First Medical University, Ji'nan 250117, China; 3Department of Radiation Oncology, Affiliated Tumor Hospital of Shandong First Medical University, Ji'nan 250117, China; 4Ji'nan Hospital of Traditional Chinese and Western Medicine, Ji'nan 271100, China
Abstract In recent years, immunotherapy has become the hottest topic in the field of oncology. Both the Keynote189 study and the Keynote407 study have confirmed that progression-free survival is significantly prolonged in patients who have been benefited from immune checkpoint blockades in lung cancer. In an article published in The New England Journal of Medicine in 2012, a case report of radiation abscopal effects caused by immunization combined with conventional radiotherapy has attracted great attention in the field of oncology. The Pacific study, published in 2017, expanded the indications for immunotherapy from advanced to locally-advanced non-small cell lung cancer. The second analysis of Keynote001, published in the Lancet Oncology in the same year, suggested that radiation therapy may mediate the immune memory effects, whereas the mechanism and time window are still unclear. With the publication of PEMBRO-RT study and several pieces of work by our team in recent years, various details of radiotherapy combined with immunotherapy (iRT) have become more mature. In clinical practice, iRT is involved in the full treatment of lung cancer. However, iRT is not a hodgepodge or stew that needs further refinement and sorting. In this article, the principles, efficacy in clinical practice, and exploration of the details of iRT were discussed.
Shang Shijie,Chen Dawei,An Cui et al. Practice and prospect of radiotherapy and immunotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1209-1215.
Shang Shijie,Chen Dawei,An Cui et al. Practice and prospect of radiotherapy and immunotherapy for lung cancer[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1209-1215.
[1] Weiner LM. Cancer immunotherapy—the endgame begins[J]. N Engl J Med, 2008, 358(25):2664-2665. DOI:10.1056/NEJMp0803663.
[2] Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy[J]. Science, 2013, 342(6165):1432-1433. DOI:10.1126/science.342.6165.1432.
[3] Disis ml. Mechanism of action of immunotherapy[J]. Semin Oncol, 2014, 41(Suppl 5):S3-13. DOI:10.1053/j.seminoncol.2014.09.004.
[4] Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer[J]. ESMO Open, 2017, 2(2):e000213. DOI:10.1136/esmoopen-2017-000213.
[5] Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer)[J]. BMC Cancer, 2018, 18(1):1086. DOI:10.1186/s12885-018-5020-3.
[6] Jin G, Qin H, Cao H, et al. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium[J]. Biomaterials, 2014, 35(27):7699-7713. DOI:10.1016/j.biomaterials.2014.05.074.
[7] Lambertini M, Preusser M, Zielinski CC MD. New emerging targets in cancer immunotherapy beyond CTLA-4, PD-1 and PD-L1:Introducing an"ESMO Open-Cancer Horizons" Series[J]. ESMO Open, 2019, 4(Suppl 3):e000501. DOI:10.1136/esmoopen-2019-000501.
[8] Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy[J]. Cancer Discov, 2018, 8(9):1069-1086. DOI:10.1158/2159-8290. CD-18-0367.
[9] Beavis PA, Henderson MA, Giuffrida L, et al. Dual PD-1 and CTLA-4 checkpoint blockade promotes antitumor immune responses through CD4(+) Foxp3(-) cell-mediated modulation of CD103(+) dendritic cells[J]. Cancer Immunol Res, 2018, 6(9):1069-1081. DOI:10.1158/2326-6066. Cir-18-0291.
[10] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355. DOI:10.1126/science.aar4060.
[11] Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer[J]. N Engl J Med, 2018, 379(21):2040-2051. DOI:10.1056/NEJMoa1810865.
[12] Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(22):2078-2092. DOI:10.1056/NEJMoa1801005.
[13] Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC[J]. N Engl J Med, 2018, 378(24):2288-2301. DOI:10.1056/NEJMoa1716948.
[14] Horn L, Mansfield AS, Szczesna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer[J]. N Engl J Med, 2018, 379(23):2220-2229. DOI:10.1056/NEJMoa1809064.
[15] Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer:results from the phase Ⅱ KEYNOTE-158 study[J]. J Clin Oncol, 2020, 38(1):1-10. DOI:10.1200/JCO.19.02105.
[16] Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas[J]. Blood, 2018, 131(1):68-83. DOI:10.1182/blood-2017-07-740993.
[17] Tsai KK, Zarzoso I, Daud AI. PD-1 and PD-L1 antibodies for melanoma[J]. Hum Vaccin Immunother, 2014, 10(11):3111-3116. DOI:10.4161/21645515.2014.983409.
[18] Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer[J]. Front Oncol, 2019, 9:396. DOI:10.3389/fonc.2019.00396.
[19] Smit EF, de Langen AJ. Pembrolizumab for all PD-L1-positive NSCLC[J]. Lancet, 2019, 393(10183):1776-1778. DOI:10.1016/s0140-6736(18)32559-5.
[20] Forster MD, Devlin MJ. Immune checkpoint inhibition in head and neck cancer[J]. Front Oncol, 2018, 8:310. DOI:10.3389/fonc.2018.00310.
[21] Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice[J]. CA Cancer J Clin, 2017, 67(1):65-85. DOI:10.3322/caac.21358.
[22] Jaffray DA. Image-guided radiotherapy:from current concept to future perspectives[J]. Nat Rev Clin Oncol, 2012, 9(12):688-699. DOI:10.1038/nrclinonc.2012.194.
[23] Ross GM. Induction of cell death by radiotherapy[J]. Endocr Relat Cancer, 1999, 6(1):41-44. DOI:10.1677/erc.0.0060041.
[24] Mole RH. Whole body irradiation;radiobiology or medicine?[J]. Br J Radiol, 1953, 26(305):234-241. DOI:10.1259/0007-1285-26-305-234.
[25] Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization[J]. Nat Commun, 2011, 2:521. DOI:10.1038/ncomms1524.
[26] Wersäll PJ, Blomgren H, Pisa P, et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma[J]. Acta Oncol, 2006, 45(4):493-497. DOI:10.1080/02841860600604611.
[27] Kingsley DP. An interesting case of possible abscopal effect in malignant melanoma[J]. Br J Radiol, 1975, 48(574):863-866. DOI:10.1259/0007-1285-48-574-863.
[28] Ohba K, Omagari K, Nakamura T, et al. Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis[J]. Gut, 1998, 43(4):575-577. DOI:10.1136/gut.43.4.575.
[29] Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity[J]. Immunol Rev, 2007, 220:60-81. DOI:10.1111/j.1600-065X.2007.00579.x.
[30] Ohshima Y, Tsukimoto M, Takenouchi T, et al. gamma-Irradiation induces P2X (7) receptor-dependent ATP release from B16 melanoma cells[J]. Biochim Biophys Acta, 2010, 1800(1):40-46. DOI:10.1016/j.bbagen.2009.10.008.
[31] Tang D, Kang R, Zeh HJ, 3rd, et al. High-mobility group box 1, oxidative stress, and disease[J]. Antioxid Redox Signal, 2011, 14(7):1315-1335. DOI:10.1089/ars.2010.3356.
[32] Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death[J]. EMBO J, 2012, 31(5):1062-1079. DOI:10.1038/emboj.2011.497.
[33] Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance[J]. Nature, 2009, 461(7261):282-286. DOI:10.1038/nature08296.
[34] Gomez DR, Tang C, Zhang J, et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer:long-term results of a multi-institutional, phase Ⅱ, randomized study[J]. J Clin Oncol, 2019, 37(18):1558-1565. DOI:10.1200/JCO.19.00201.
[35] Iyengar P, Wardak Z, Gerber DE, et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer:a phase 2 randomized clinical trial[J]. JAMA Oncol, 2018, 4(1):e173501. DOI:10.1001/jamaoncol.2017.3501.
[36] Demaria S, Formenti SC. Radiation as an immunological adjuvant:current evidence on dose and fractionation[J]. Front Oncol, 2012, 2:153. DOI:10.3389/fonc.2012.00153.
[37] Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014, 124(2):687-695. DOI:10.1172/JCI67313.
[38] Dovedi SJ, Adlard AL, Lipowska-Bhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19):5458-5468. DOI:10.1158/0008-5472. Can-14-1258.
[39] Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015, 520(7547):373-377. DOI:10.1038/nature14292.
[40] Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy[J]. Cancer Immunol Res, 2016, 4(11):895-902. DOI:10.1158/2326-6066. CIR-16-0197.
[41] Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy[J]. JAMA Oncol, 2015, 1(9):1325-1332. DOI:10.1001/jamaoncol.2015.2756.
[42] Durm GA, Jabbour SK, Althouse SK, et al. A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage Ⅲ non-small cell lung cancer:hoosier cancer research network LUN 14-179[J]. Cancer, 2020, 126(19):4353-4361. DOI:10.1002/cncr.33083.
[43] Wang Y, Liu ZG, Yuan H, et al. The Reciprocity between Radiotherapy and Cancer Immunotherapy[J]. Clin Cancer Res, 2019, 25(6):1709-1717. DOI:10.1158/1078-0432. Ccr-18-2581.
[44] Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042):a randomised, open-label, controlled, phase 3 trial[J]. Lancet, 2019, 393(10183):1819-1830. DOI:10.1016/S0140-6736(18)32409-7.
[45] Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19):1823-1833. DOI:10.1056/NEJMoa1606774.
[46] Garon EB, Hellmann MD, Rizvi NA, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab:results from the phase I KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37(28):2518-2527. DOI:10.1200/jco.19.00934.
[47] Buck MD, Sowell RT, Kaech SM, et al. Metabolic instruction of immunity[J]. Cell, 2017, 169(4):570-586. DOI:10.1016/j.cell.2017.04.004.
[48] Theelen W, Peulen HMU, Lalezari F, et al. Effect of pembrolizumab after stereotactic body radiotherapy vs. pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer:results of the pembro-rt phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(9):1276-1282. DOI:10.1001/jamaoncol.2019.1478.
[49] Welsh J, Menon H, Chen D, et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer:a randomized phase Ⅰ/Ⅱ trial[J]. J Immunother Cancer, 2020, 8(2):e001001. DOI:10.1136/jitc-2020-001001.
[50] Motz GT, Coukos G. Deciphering and reversing tumor immune suppression[J]. Immunity, 2013, 39(1):61-73. DOI:10.1016/j.immuni.2013.07.005.
[51] Apetoh L, Ghiringhelli F, Tesniere A, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy[J]. Immunol Rev, 2007, 220:47-59. DOI:10.1111/j.1600-065X.2007.00573.x.
[52] Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS/M1 phenotype that orchestrates effective T cell immunotherapy[J]. Cancer Cell, 2013, 24(5):589-602. DOI:10.1016/j.ccr.2013.09.014.
[53] Huang Y, Snuderl M, Jain RK. Polarization of tumor-associated macrophages:a novel strategy for vascular normalization and antitumor immunity[J]. Cancer Cell, 2011, 19(1):1-2. DOI:10.1016/j.ccr.2011.01.005.
[54] Rödel F, Frey B, Gaipl U, et al. Modulation of inflammatory immune reactions by low-dose ionizing radiation:molecular mechanisms and clinical application[J]. Curr Med Chem, 2012, 19(12):1741-1750. DOI:10.2174/092986712800099866.
[55] Liu SZ. Cancer control related to stimulation of immunity by low-dose radiation[J]. Dose Response, 2006, 5(1):39-47. DOI:10.2203/dose-response.06-108.
[56] Liu SZ, Liu WH, Sun JB. Radiation hormesis:its expression in the immune system[J]. Health Phys, 1987, 52(5):579-583. DOI:10.1097/00004032-198705000-00008.
[57] Liu SZ, Jin SZ, Liu XD, et al. Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes[J]. BMC Immunol, 2001, 2:8. DOI:10.1186/1471-2172-2-8.
[58] Shin SC, Lee KM, Kang YM, et al. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation[J]. Biochem Biophys Res Commun, 2010, 397(4):644-649. DOI:10.1016/j.bbrc.2010.05.121.
[59] Ina Y, Sakai K. Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains:analysis of immune cell populations and surface molecules[J]. Int J Radiat Biol, 2005, 81(10):721-729. DOI:10.1080/09553000500519808.
[60] Barsoumian H, Cushman TR, Caetano MDS, et al. Low dose radiation improves anti-tumor responses in a phase 2 prospective trial of concurrent or sequential stereotactic radiation and ipilimumab in patients with metastatic lesions[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3):S26-S26. DOI:10.1016/j.ijrobp.2018.06.149.
[61] Arnold KM, Flynn NJ, Raben A, et al. The Impact of radiation on the tumor microenvironment:effect of dose and fractionation schedules[J]. Cancer Growth Metast, 2018, 11:1179064418761639. DOI:10.1177/1179064418761639.
[62] Wrzesinski C, Paulos CM, Kaiser A, et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells[J]. J Immunother, 2010, 33(1):1-7. DOI:10.1097/CJI.0b013e3181b88ffc.
[63] Lerret NM, Rogozinska M, Jaramillo A, et al. Adoptive transfer of mammaglobin-A epitope specific CD8 T cells combined with a single low dose of total body irradiation eradicates breast tumors[J]. PLoS One, 2012, 7(7):e41240. DOI:10.1371/journal.pone.0041240.
[64] Chinnasamy D, Yu Z, Kerkar SP, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice[J]. Clin Cancer Res, 2012, 18(6):1672-1683. DOI:10.1158/1078-0432. Ccr-11-3050.
[65] Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells[J]. J Exp Med, 2005, 202(7):907-912. DOI:10.1084/jem.20050732.
[66] Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4signaling[J]. J Clin Invest, 2007, 117(8):2197-2204. DOI:10.1172/JCI32205.
[67] Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma:evaluation of intensive myeloablative chemoradiation preparative regimens[J]. J Clin Oncol, 2008, 26(32):5233-5239. DOI:10.1200/JCO.2008.16.5449.
[68] Goff SL, Dudley ME, Citrin DE, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma[J]. J Clin Oncol, 2016, 34(20):2389-2397. DOI:10.1200/jco.2016.66.7220.
[69] Wang X, Schoenhals JE, Li A, et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy[J]. Cancer Res, 2017, 77(4):839-850. DOI:10.1158/0008-5472. Can-15-3142.
[70] Menon H, Ramapriyan R, Cushman TR, et al. Role of radiation therapy in modulation of the tumor stroma and microenvironment[J]. Front Immunol, 2019, 10:193. DOI:10.3389/fimmu.2019.00193.
[71] Demaria S, Coleman CN, Formenti SC. Radiotherapy:changing the Game in Immunotherapy[J]. Trends Cancer, 2016, 2(6):286-294. DOI:10.1016/j.trecan.2016.05.002.
[72] Feng GS, Hui CC, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases[J]. Science, 1993, 259(5101):1607-1611. DOI:10.1126/science.8096088.
[73] Chen YN, LaMarche MJ, Chan HM, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases[J]. Nature, 2016, 535(7610):148-152. DOI:10.1038/nature18621.
[74] Mainardi S, Mulero-Sánchez A, Prahallad A, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo[J]. Nat Med, 2018, 24(7):961-967. DOI:10.1038/s41591-018-0023-9.
[75] Dardaei L, Wang HQ, Singh M, et al. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors[J]. Nat Med, 2018, 24(4):512-517. DOI:10.1038/nm.4497.
[76] Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J]. Science, 2017, 355(6332):1428-1433. DOI:10.1126/science.aaf1292.
[77] Li J, Jie HB, Lei Y, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment[J]. Cancer Res, 2015, 75(3):508-518. DOI:10.1158/0008-5472. CAN-14-1215.
[78] Xiao P, Guo Y, Zhang H, et al. Myeloid-restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal promotion of CXCL9 and IFN-γ production in tumor microenvironment[J]. Oncogene, 2018, 37(37):5088-5100. DOI:10.1038/s41388-018-0337-6.
[79] Niogret C, Miah SMS, Rota G, et al. Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells[J]. Nat Commun, 2019, 10(1):1444. DOI:10.1038/s41467-019-09431-3.
[80] Zhao M, Guo W, Wu Y, et al. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade[J]. Acta Pharm Sin B, 2019, 9(2):304-315. DOI:10.1016/j.apsb.2018.08.009.
[81] Chen D, Barsoumian HB, Yang L, et al. SHP-2 and PD-L1 Inhibition Combined with Radiotherapy Enhances Systemic Antitumor Effects in an Anti-PD-1-Resistant Model of Non-Small Cell Lung Cancer[J]. Cancer Immunol Res, 2020, 8(7):883-894. DOI:10.1158/2326-6066. Cir-19-0744.