[an error occurred while processing this directive] | [an error occurred while processing this directive]
Application of auto-importing of CT images and structures into treatment planning system based on UiBot software
Li Bing1, Cheng Zhiyao2, Guo Wei1, Mao Ronghu1, Lou Zhaoyang1, Cheng Xiuyan1, Ge Hong1
1Department of Radiation Oncology,Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; 2Varian Medical Systems Inc. Clinical Application Training Department, Beijing 102600, China
AbstractObjective To build a systemic and automatic importing scheme for importing CT images and structures into the treatment planning systems (TPSs) of Eclipse and Monaco. Methods Based on two TPSs of Eclipse and Monaco, the files of CT images and structures were automatically transported from OAR auto-delineation system to the importing directory of these two TPSs using batch script in Windows system. Following the standard importing procedures of these two TPSs, the automatically importing script of CT images and structures were developed using the application of UiBot. Finally, the CT images and structures were imported into these two TPSs opportunely. Results By comparing the importing time using script and manual methods, the script not only achieved auto-importing CT images and structures into TPSs, but also yielded almost the same efficiency to manual method. The number of imaging layers in most patients was between 130 and 180, and the average manual and automatic importing time within this interval was 76s and 75s. Conclusions Automatic scripts can be developed by using the automation function of UiBot combined with the actual problems of radiotherapy and repeated workflow. The efficiency of radiotherapy work can be significantly improved. Manual and time costs can be saved. It provides a novel alternative for the automation of radiotherapy procedures.
Corresponding Authors:
Ge Hong, Email:gehong666@126.com
Cite this article:
Li Bing,Cheng Zhiyao,Guo Wei et al. Application of auto-importing of CT images and structures into treatment planning system based on UiBot software[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1178-1182.
Li Bing,Cheng Zhiyao,Guo Wei et al. Application of auto-importing of CT images and structures into treatment planning system based on UiBot software[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1178-1182.
[1] 范嘉伟,王佳舟,胡伟刚. 调强放射治疗自动计划技术的研究进展[J]. 中国癌症杂志,2018, 28(6):435-438. DOI:10.19401/j.cnki.1007-3639.2018.06.007. Fan JW, Wang JZ, Hu WG. Automatic planning technique in intensity-modulated radiation therapy[J]. Chin Oncol, 2018, 28(6):435-438. DOI:10.19401/j.cnki.1007-3639.2018.06.007. [2] Zarepisheh M, Long T, Li N, et al. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning[J]. Med Phys, 2014, 41(6 Pt 1):061711. DOI:10.1118/1.4875700. [3] Hussein M, Heijmen BJM, Verellen D, et al. Automation in intensity modulated radiotherapy treatment planning—a review of recent innovations[J]. Br J Radiol, 2018, 91(1092):20180270. DOI:10.1259/bjr.20180270. [4] Isambert A, Dhermain F, Bidault F, et al. Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context[J]. Radiother Oncol, 2008, 87(1):93-99. DOI:10.1259/bjr.20180270. [5] Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks[J]. Med Phys, 2017, 44(12):6377-6389. DOI:10.1002/mp.12602. [6] Cardenas CE, McCarroll RE, Court LE, et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function[J]. Int J Radiat Oncol Biol Phys, 2018, 101(2):468-478. DOI:10.1016/j.ijrobp.2018.01.114. [7] van der Veen J, Willems S, Deschuymer S, et al. Benefits of deep learning for delineation of organs at risk in head and neck cancer[J]. Radiother Oncol, 2019, 138(1):68-74. DOI:10.1016/j.radonc.2019.05.010. [8] 陈维军,狄小云,王彬冰,等. Pinnacle 计划系统脚本在调强放疗计划中的应用研究[J]. 中国医学物理学杂志,2010, 27(3):1858-1861. DOI:10.3969/j.issn.1005-202X.2010.03.010. Chen WJ, Di XY, Wang BB, et al. Application of scripting in pinnacle TPS for IMRT planning[J]. Chin J Med Phys, 2010, 27(3):1858-1861. DOI:10.3969/j.issn.1005-202X.2010.03.010. [9] 张国前,张书旭,王琳婧,等. 脚本函数在鼻咽癌在线自适应放疗中的可行性研究[J] 中国医疗设备,2020, 35(3):67-70. DOI:10.3969/j.issn.1674-1633.2020.03.017. Zhang GQ, Zhang SX, Wang LJ, et al. Feasibility study of script function in online adaptive radiotherapy for NPC[J]. Chin Med Equip, 2020, 35(3):67-70. DOI:10.3969/j.issn.1674-1633.2020.03.017. [10] 邵凯南,翁邓胡,李玉成,等. 基于Python脚本的RayStation治疗计划系统逆向调强放疗计划半自动设计[J]. 中国医学物理学杂志, 2018, 35(2):156-160. DOI:10.3969/j.issn.1005-202X.2018.02.007. Shao KN, Weng DH, Li YC, et al. Semi-automatic design of inverse intensity-modulated radiotherapy treatment plans based on Python scripts in RayStation treatment planning system[J]. Chin J Med Phys, 2018, 35(2):156-160. DOI:10.3969/j.issn.1005-202X.2018.02.007. [11] 张建英,孙菁,王芸. RayStation 治疗计划系统脚本的进阶应用[J]. 中国医疗器械杂志,2014, 38(6):463-465. DOI:10.3969/j.issn.1671-7104.2014.06.022. Zhang JY, Sun J, Wang Y. Discussion to the advanced application of scripting in raystation TPS system[J]. Chin J Med Instrument, 2014, 38(6):463-465. DOI:10.3969/j.issn.1671-7104.2014.06.022. [12] 王忠文,林治学,王克,等. Pinnacle系统增加快速查找患者功能的实现[J]. 中华放射肿瘤学杂志,2018, 27(11):1021-1023. DOI:10.3760/cma.j.issn.1004-4221.2018.11.016. Wang ZW, Lin ZX, Wang K, et al. The Pinnacle system increases the speed of searching for patient functionality[J]. Chin J Radiat Oncol, 2018, 27(11):1021-1023. DOI:10.3760/cma.j.issn.1004-4221.2018.11.016. [13] 符贵山,黄朋,张可,等. Pinnacle TPS计划设计过程备份与还原可行性探讨[J]. 中华放射肿瘤学杂志,2018, 27(2):185-189. DOI:10.3760/cma.j.issn.1004-4221.2018.02.013. Fu GS, Huang P, Zhang K, et al. Pinnacle TPS planning design process backup and restore feasibility discussion[J]. Chin J Radiat Oncol, 2018, 27(2):185-189. DOI:10.3760/cma.j.issn.1004-4221.2018.02.013. [14] 王忠文,林治学,宋歌,等. 利用条形码标识放疗患者的计划报告[J]. 中华放射肿瘤学杂志,2016, 25(1):18-19. DOI:10.3760/cma.j.issn.1004-4221.2016.01.005. Wang ZW, Lin ZX, Song G, et al. Plan report for identifying radiotherapy patients using a barcode[J]. Chin J Radiat Oncol, 2016, 25(1):18-19. DOI:10.3760/cma.j.issn.1004-4221.2016.01.005. [15] DVH estimation models for rapid plan, Eclipse photon and electron instructions for use[M]. Palo Alto:Varian Medical Systems, 2014. [16] Winkel D, Bol GH, van Asselen B, et al. Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer[J]. Phys Med Biol, 2016, 61(24):8587-8595. DOI:10.1088/1361-6560/61/24/8587. [17] Ayala R, Ruiz G, Valdivielso T. Automatizing a non-scripting TPS for optimizing clinical workflow and reoptimizing IMRT/VMAT plans[J]. Med Dosim, 2019, 44(4):409-414. DOI:10.1016/j.meddos.2019.02.006.