[an error occurred while processing this directive] | [an error occurred while processing this directive]
Comparison of different delineation methods of clinical target volume of internal mammary lymph node for patients after internal mammary lymph node dissection
Wang Xue1,2, Wang Wei2, Li Jianbin2, Zheng Gang3, Zhang Wenyu4
1Shandong First Medical University and Shandong Academy of Medical Sciences, Ji' nan 250200, China; 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China; 3Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China; 4Department of Imaging, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China Wang Xue is working on Tianjin Normal University, Tianjin 300387, China
AbstractObjective To compare the differences of postoperative clinical target volume of internal mammary lymph node (CTVImlN) by different delineation methods, and to explore the reasonable method of CTVImlN delineation after internal mammary lymph node dissection (ImlND). Methods A total of 20 breast cancer patients who had undergone modified radical mastectomy(MRM) with ImlND on the affected side and had complete preoperative and postoperative CT images were selected. The CTV (CTVpr-I, CTVpr-a) of both sides of ImlN were delineated on preoperative CT images according to RTOG guideline. On postoperative CT images, three different methods including deformation image registration (DIR) method, visual contrast method and precise measurement method, were employed to delineate the postoperative CTVImlN of the affected side. The targets were named as CTVDIR, CTVV and CTVM, respectively. The central displacement, target volume, degree of inclusion (DI) and conformity index (CI) of CTVpr-a, CTVV, CTVM and CTVDIR were compared. Results The central displacement of CTVV, CTVM and CTVDIR from CTVpr-a was 2.17cm, 1.44cm and 1.25cm,respectively. The target volume of CTVpr-a, CTVpr-I,CTVV, CTVM and CTVDIR was 2.10cm3, 2.17cm3, 2.04cm3, 1.88cm3 and 2.07cm3 respectively. There was no significant difference in the target volume (all P>0.05). The CI values of CTVV-CTVpr-a and CTVM-CTVpr-a were both 0.16, and that of CTVDIR-CTVpr-a was 0.43. The CI value of CTVDIR was significantly higher than those of CTVV and CTVM (both P<0.01). The DI values of CTVV-CTVpr-a, CTVM-CTVpr-a and CTVDIR-CTVpr-a were 0.26, 0.24 and 0.58, respectively. The DI value of CTVDIR was significantly higher than those of CTVV and CTVM (both P<0.01). Conclusions It is difficult to accurately delineate the CTVImlN for patients after ImlND. However, the spatial position fitness of the target region delineated by DIR method is better than those by visual contrast and precise measurement methods.
Fund:Natural Science Foundation of Shandong Province (ZR2020QH260);Taishan Scholars Program of Shandong Province (ts20190982)
Corresponding Authors:
Li Jianbin, Email: lijianbin@msn.com; Wang Wei, Email: w.wei1103@163.com
Cite this article:
Wang Xue,Wang Wei,Li Jianbin et al. Comparison of different delineation methods of clinical target volume of internal mammary lymph node for patients after internal mammary lymph node dissection[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1136-1141.
Wang Xue,Wang Wei,Li Jianbin et al. Comparison of different delineation methods of clinical target volume of internal mammary lymph node for patients after internal mammary lymph node dissection[J]. Chinese Journal of Radiation Oncology, 2021, 30(11): 1136-1141.
[1] Poortmans PM, Collette S, Kirkove C, et al. Internal mammary and medial supraclavicular irradiation in breast cancer[J]. N Engl J Med, 2015, 373(4):317-327. DOI:10.1056/NEJMoa1415369.
[2] Whelan TJ, Olivotto IA, Parulekar WR, et al. Regional nodal irradiation in early-stage breast cancer[J]. N Engl J Med, 2015, 373(4):307-316. DOI:10.1056/NEJMoa1415340.
[3] Thorsen LB, Offersen BV, Danø H, et al. DBCG-IMN:a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer[J]. J Clin Oncol, 2016, 34(4):314-320. DOI:10.1200/JCO.2015.63.6456.
[4] Poortmans PM, Weltens C, Fortpied C, et al. Internal mammary and medial supraclavicular lymph node chain irradiation in stage Ⅰ-Ⅲ breast cancer (EORTC 22922/10925):15-year results of a randomised, phase 3 trial[J]. Lancet Oncol, 2020, 21(12):1602-1610. DOI:10.1016/S1470-2045(20)30472-1.
[5] Haussmann J, Budach W, Tamaskovics B, et al. Which target volume should be considered when irradiating the regional nodes in breast cancer? Results of a network-meta-analysis[J]. Radiat Oncol, 2019, 14(1):102. DOI:10.1186/s13014-019-1280-6.
[6] Jethwa KR, Kahila MM, Hunt KN, et al. Delineation of internal mammary nodal target volumes in breast cancer radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2017, 97(4):762-769. DOI:10.1016/j.ijrobp.2016.11.037.
[7] Kowalski ES, Feigenberg SJ, Cohen J, et al. Optimal target delineation and treatment techniques in the era of conformal photon and proton breast and regional nodal irradiation[J]. PractRadiat Oncol, 2020, 10(3):174-182. DOI:10.1016/j.prro.2019.11.010.
[8] Ezhil M, Vedam S, Balter P, et al. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography[J]. Radiat Oncol, 2009, 4:4. DOI:10.1186/1748-717X-4-4.
[9] Harris EJ, Donovan EM, Yarnold JR, et al. Characterization of target volume changes during breast radiotherapy using implanted fiducial markers and portal imaging[J]. Int J Radiat Oncol Biol Phys, 2009, 73(3):958-966. DOI:10.1016/j.ijrobp.2008.10.030.
[10] Freedman GM, Fowble BL, Nicolaou N, et al. Should internal mammary lymph nodes in breast cancer be a target for the radiation oncologist?[J]. Int J Radiat Oncol Biol Phys, 2000, 46(4):805-814. DOI:10.1016/s0360-3016(99)00481-2.
[11] McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality:meta-analysis of individual patient data for 8135 women in 22 randomised trials[J]. Lancet, 2014, 383(9935):2127-2135. DOI:10.1016/S0140-6736(14)60488-8.
[12] Thorsen LB, Offersen BV, Danø H, et al. DBCG-IMN:a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer[J]. J Clin Oncol, 2016, 34(4):314-320. DOI:10.1200/JCO.2015.63.6456.
[13] Darby S, McGale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death:meta-analysis of individual patient data for 10,801 women in 17 randomised trials[J]. Lancet, 2011, 378(9804):1707-1716. DOI:10.1016/S0140-6736(11)61629-2.
[14] Veronesi U, Marubini E, Mariani L, et al. The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial[J]. Eur J Cancer, 1999, 35(9):1320-1325. DOI:10.1016/s0959-8049(99)00133-1.
[15] 孙晓,丛斌斌,邱鹏飞,等. 临床腋窝淋巴结阳性乳腺癌患者内乳区前哨淋巴结活检术研究[J]. 中国肿瘤临床,2015(6):341-344. DOI:10.3969/j.issn.1000-8179.20150009.
Sun X, Cong BB, Qiu PF, et al. Internal mammary sentinel lymph node biopsy in breast cancer patients with clinically positive axillary lymph nodes[J]. Chin J Clin Oncol, 2015(6):341-344. DOI:10.3969/j.issn.1000-8179.20150009.
[16] Cao XS, Yang GR, Cong BB, et al. The lymphatic drainage pattern of internal mammary sentinel lymph node identified by small particle radiotracer (99mTc-dextran 40) in breast[J]. Cancer Res Treat, 2019, 51(2):483-492. DOI:10.4143/crt.2018.062.
[17] Qiu PF, Cong BB, Zhao RR, et al. Internal mammary sentinel lymph node biopsy with modified injection technique:high visualization rate and accurate staging[J]. Med (Balt), 2015, 94(41):e1790. DOI:10.1097/MD.0000000000001790.
[18] 姜军. 乳腺癌扩大根治术的评价和应用前景[J]. 中国普外基础与临床杂志,2001, 8(5):335-336. DOI:10.3969/j.issn.1007-9424.2001.05.020.Jiang J. Evaluation and application prospect of extensive radical mastectomy for breast carcionma[J]. Chin J bases clin gener surg, 2001, 8(5):335-336. DOI:10.3969/j.issn.1007-9424.2001.05.020.
[19] Lacour J, Le M, Caceres E, et al. Radical mastectomy versus radical mastectomy plus internal mammary dissection. Ten year results of an international cooperative trial in breast cancer[J]. Cancer, 1983, 51(10):1941-1943. DOI:10.1002/1097-0142(19830515)51:10<1941::aid-cncr2820511032>3.0.co;2-t.
[20] Woodard GA, Lee H, Fels Elliott DR, et al. Case report:recurrent metastatic breast cancer in internal mammary dissection bed discovered at the time of coronary bypass[J]. J Cardiothorac Surg, 2019, 14(1):158. DOI:10.1186/s13019-019-0980-1.
[21] Yang K, Kim H, Choi DH, et al. Optimal radiotherapy for patients with internal mammary lymph node metastasis from breast cancer[J]. Radiat Oncol, 2020, 15(1):16. DOI:10.1186/s13014-020-1464-0.
[22] White J, Tai A, Arthur D, et al. Radiation Therapy Oncology Group breast cancer contouring atlas[EB/OL][2021-01-02]. https://www.rtog.org/CoreLab/ContouringAtlases/BreastCancerAtlas.aspx.
[23] Offersen BV, Boersma LJ, Kirkove C, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1[J]. Radiother Oncol, 2016, 118(1):205-208. DOI:10.1016/j.radonc.2015.12.027.
[24] Verhoeven K, Weltens C, Remouchamps V, et al. Vessel based delineation guidelines for the elective lymph node regions in breast cancer radiation therapy-PROCAB guidelines[J]. Radiother Oncol, 2015, 114(1):11-16. DOI:10.1016/j.radonc.2014.11.008.
[25] Nielsen MH, Berg M, Pedersen AN, et al. Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer:national guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group[J]. Acta Oncol, 2013, 52(4):703-710. DOI:10.3109/0284186X.2013.765064.
[26] Qingqing H, Jian Z, Dayong Z, et al. Robot-assisted internal mammary lymph node chain dissection for breast cancer[J]. Clin Breast Cancer, 2018, 18(4):e441-e445. DOI:10.1016/j.clbc.2018.04.007.
[27] Glassberg RM, Sussman SK, Glickstein MF. CT anatomy of the internal mammary vessels:importance in planning percutaneous transthoracic procedures[J]. AJR Am J Roentgenol, 1990, 155(2):397-400. DOI:10.2214/ajr.155.2.2115273.
[28] Dursun M, Yekeler E, Yilmaz S, et al. Mapping of internal mammary vessels by multidetector computed tomography for parasternal transthoracic intervention guidance[J]. J Comput Assist Tomogr, 2005, 29(5):617-620. DOI:10.1097/01.rct.0000172673.17188.69.
[29] 徐敏,李建彬,田世禹,等. 乳腺癌术后CT模拟定位内乳动静脉勾画测定内乳淋巴结深度与宽度[J]. 中华放射肿瘤学杂志,2009, 18(4):330-331. DOI:10.3760/cma.j.issn.1004-4221.2009.04.330.
Xu M, Li JB, Tian SY. Delineation of internal mammary arteries and veins by cT simulation after breast cancer surgery to determine the depth and width of internal mammary lymph nodes[J]. Chin J Radiat Oncol, 2009, 18(4):330-331. DOI:10.3760/cma.j.issn.1004-4221.2009.04.330.
[30] Simon A, Nassef M, Rigaud B, et al. Roles of deformable image registration in adaptive RT:from contour propagation to dose monitoring[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2015, 2015:5215-5218. DOI:10.1109/EMBC.2015.7319567.
[31] Huang Y, Li C, Wang H, et al. A quantitative evaluation of deformable image registration based on MV cone beam CT images:Impact of deformation magnitudes and image modalities[J]. Phys Med, 2020, 71:82-87. DOI:10.1016/j.ejmp.2020.02.016.
[32] van Dam IE, van Sörnsen de Koste JR, Hanna GG, et al. Improving target delineation on 4-dimensional CT scans in stage Ⅰ NSCLC using a deformable registration tool[J]. Radiother Oncol, 2010, 96(1):67-72. DOI:10.1016/j.radonc.2010.05.003.