[an error occurred while processing this directive] | [an error occurred while processing this directive]
Basic research progress on the combination of heavy ion beam and immunotherapy in the treatment of malignant neoplasm
Geng Yichao1,2, Zhang Qiuning2,3, Lu Bing1, Wang Xiaohu2,3
1Department of Oncology, Affiliated Hospital of Guizhou Medical University, and Guizhou Cancer Hospital, Guiyang 550004, China; 2Department of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 3Lanzhou Heavy Ion Hospital, Lanzhou 730000, China
Abstract In recent years,heavy ion beams have received great attention in the field of malignant tumor radiotherapy due to their radiation physics and biological characteristics. The high rate of local tumor control is one of its advantages, but the control rate of metastatic lesions is still crucial in the treatment of most malignant tumors. Clinical studies on the combined conventional radiotherapy and immunotherapy suggest that the combination of the two can not only control the primary lesions, but may also reduce or completely eliminate distant metastatic lesions. High linear energy transfer radiation, especially heavy ion beams, may have stronger potential in combined immunotherapy. Therefore, this article focuses on the basic research progress of heavy ion beams regulating anti-tumor immune effects and their combined application with immunotherapy.
Fund:Science and Technology Plan Project of Chengguan District of Lanzhou (2020-2-2-5);Talent innovation and venture project of Lanzhou city (2017-RC-23、2020-RC-113);Key R & D Program of Science and Technology Department of Gansu Province (20YF8FA116)
Corresponding Authors:
Wang Xiaohu, Email:xhwang@impcas.ac.cn
Cite this article:
Geng Yichao,Zhang Qiuning,Lu Bing et al. Basic research progress on the combination of heavy ion beam and immunotherapy in the treatment of malignant neoplasm[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 867-870.
Geng Yichao,Zhang Qiuning,Lu Bing et al. Basic research progress on the combination of heavy ion beam and immunotherapy in the treatment of malignant neoplasm[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 867-870.
[1] 吴锦,吕佳忆,蓝艳,等. 肿瘤免疫治疗的研究进展[J]. 细胞与分子免疫学杂志,2019, 35(7):659-664. Wu J, Lyu JY, Lan Y, et al. Research progress in tumor immunotherapy[J]. J Cell Mol Immunol, 2019, 35(7):659-664. [2] 韩春燕,刘庆云,盛立军. 放疗联合免疫治疗机制及临床研究进展[J]. 中华肿瘤防治杂志,2019, 26(18):1317-1322. DOI:10.16073/j.cnki.cjcpt.2019.18.01. Han CY, Liu QY, Sheng LJ. Mechanism of radiotherapy and immunotherapy and clinical research[J]. Chin J Cancer Prevent Cont, 2019,26(18):1317-1322. DOI:10.16073/j.cnki.cjcpt. 2019.18.01. [3] Ebner DK, Tinganelli W, Helm A, et al. The immunoregulatory potential of particle radiation in cancer therapy[J]. Front Immunol, 2017, 8:99. DOI:10.3389/fimmu.2017.00099. [4] 张俸萁,王琳,李甸源,等. 碳离子束治疗肿瘤的研究进展[J]. 癌症进展,2019, 17(22):2620-2622,2732. DOI:10.11877/j.issn.1672-1535.2019.17.22.04. Zhang FQ, Wang L, Li DY, et al. Research progress in carbon ion beam treating tumors[J]. Cancer Prog, 2019,17(22):2620-2622,2732. DOI:10.11877/j.issn.1672-1535.2019.17.22.04. [5] 戴迎初,陆嘉德,周光明. 重离子治疗肿瘤的生物学基础研究进展[J]. 中华放射医学与防护杂志,2020, 40(3):247-52. DOI:10.3760/cma.j.issn.0254-5098.2020.03.013. Dai YC, Lu JD, Zhou GM. Progress in the biology foundation of heavy ion treatment of tumors[J]. Chin J Radiol Protect, 2020, 40(3):247-252. DOI:10.3760/cma.j.issn. 0254-5098.2020.03.013. [6] Matsufuji N. Selection of carbon beam therapy:biophysical models of carbon beam therapy[J]. J Radiat Res, 2018, 59(Suppl_1):i58-i62. DOI:10.1093/jrr/rry014. [7] Krause M, Dubrovska A, Linge A, et al. Cancer stem cells:Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments[J]. Adv Drug Deliv Rev,2017,109:63-73. DOI:10.1016/j.addr.2016.02.002. [8] Mori E, Takahashi A, Yamakawa N, et al. High LET heavy ion radiation induces p53-independent apoptosis[J]. J Radiat Res, 2009, 50(1):37-42. DOI:10.1269/jrr.08075. [9] Galluzzi L, Buqué A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2):97-111. DOI:10.1038/nri.2016.107. [10] Deng L, Liang H, Xu M, et al. STING-dependent cytosolic dna sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5):843-852. DOI:10.1016/j.immuni.2014.10.019. [11] Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes:differences in immunostimulation[J]. Cell Death Dis, 2016, 7(12):e2518. DOI:10.1038/cddis.2016.410. [12] Durante M, Formenti S. Radiation-induced chromosomal aberrations and immunotherapy:micronuclei, cytosolic DNA, and interferon-production pathway[J]. Front Oncol, 2018, 8:192. DOI:10.3389/fonc.2018.00192. [13] Hintzsche H, Hemmann U, Poth A, et al. Fate of micronuclei and micronucleated cells[J]. Mutat Res, 2017, 771:85-98. DOI:10.1016/j.mrrev.2017.02.002. [14] Bernstein MB, Krishnan S, Hodge JW, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR):a curative approach?[J]. Nat Rev Clin Oncol, 2016, 13(8):516-524. DOI:10.1038/nrclinonc.2016.30. [15] Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8:15618. DOI:10.1038/ncomms15618. [16] Sukkurwala AQ, Adjemian S, Senovilla L, et al. Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set[J]. Oncoimmunology, 2014, 3:e28473. DOI:10.4161/onci.28473. [17] Durante M, Formenti S. Harnessing radiation to improve immunotherapy:better with particles?[J]. Br J Radiol, 2020, 93(1107):20190224. DOI:10.1259/bjr.20190224. [18] Onishi M, Okonogi N, Oike T, et al. High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells[J]. J Radiat Res, 2018, 59(5):541-546. DOI:10.1093/jrr/rry049. [19] Huang Y, Dong Y, Zhao J, et al. Comparison of the effects of photon,proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines[J]. Ann Transl Med, 2019, 7(20):542. DOI:10.21037/atm.2019.09.128. [20] Jin Y, Hong Y, Park CY, et al. Molecular interactions of autophagy with the immune system and cancer[J]. Int J Mol Sci, 2017, 18(8):1694. DOI:10.3390/ijms18081694. [21] Kim S, Ramakrishnan R, Lavilla-Alonso S, et al. Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice[J]. Cancer Immunol Immunother, 2014, 63(10):1009-1021. DOI:10.1007/s00262-014-1573-4. [22] Altmeyer A, Ignat M, Denis JM, et al. Cell death after high-LET irradiation in orthotopic human hepatocellular carcinoma in vivo[J]. in vivo, 2011, 25(1):1-9. [23] Jin X, Liu Y, Ye F, et al. Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells[J]. Cancer Sci, 2014, 105(7):770-778. DOI:10.1111/cas.12422. [24] Jin X, Li F, Zheng X, et al. Carbon ions induce autophagy effectively through stimulating the unfolded protein response and subsequent inhibiting Akt phosphorylation in tumor cells[J]. Sci Rep, 2015, 5:13815. DOI:10.1038/srep13815. [25] Seideman JH, Stancevic B, Rotolo JA, et al. Alpha particles induce apoptosis through the sphingomyelin pathway[J]. Radiat Res, 2011, 176(4):434-446. DOI:10.1667/rr2472.1. [26] De Wolf K, Vermaelen K, De Meerleer G, et al. The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy[J]. Oncoimmunology, 2015, 4(10):e1042198. DOI:10.1080/2162402x.2015.1042198. [27] Ngwa W, Irabor OC, Schoenfeld JD, et al. Using immunotherapy to boost the abscopal effect[J]. Nat Rev Cancer, 2018, 18(5):313-322. DOI:10.1038/nrc.2018.6. [28] Igarashi H, Fukuda M, Konno Y, et al. Abscopal effect of radiation therapy after nivolumab monotherapy in a patient with oral mucosal melanoma:a case report[J]. Oral Oncol, 2020, 108:104919. DOI:10.1016/j.oraloncology.2020.104919. [29] Ng J, Dai T. Radiation therapy and the abscopal effect:a concept comes of age[J]. Ann Transl Med, 2016, 4(6):118. DOI:10.21037/atm.2016.01.32. [30] Ando K, Fujita H, Hosoi A, et al. Intravenous dendritic cell aDministration enhances suppression of lung metastasis induced by carbon-ion irradiation[J]. J Radiat Res, 2017, 58(4):446-455. DOI:10.1093/jrr/rrx005. [31] Takahashi Y, Yasui T, Minami K, et al. Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma[J]. Oncotarget, 2019, 10(6):633-646. DOI:10.18632/oncotarget.26551. [32] Matsunaga A, Ueda Y, Yamada S, et al. Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma[J]. Cancer, 2010, 116(15):3740-3748. DOI:10.1002/cncr.25134. [33] Cho Y, Park S, Byun H K, et al. Impact of Treatment-related lymphopenia on immunotherapy for advanced non-small cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 105(5):1065-1073. DOI:10.1016/j.ijrobp.2019.08.047. [34] Durante M, Yamada S, Ando K, et al. X-rays vs. carbon-ion tumor therapy:cytogenetic damage in lymphocytes[J]. Int J Radiat Oncol Biol Phys, 2000, 47(3):793-798. DOI:10.1016/s0360-3016(00)00455-7.