AbstractObjective To evaluate the radiosensitivity enhancement effect of FePd@CNTs nanocomposites on human breast cancer MCF-7 cells. Methods FePd@CNTs nanocomposites were synthesized by chemical reduction method. Transmission electron microscope and energy dispersive spectrometer were utilized to characterize the surface morphology and chemical composition of FePd@CNTs nanocomposites. The compatibility of FePd@CNTs nanocomposites with human normal breast epithelial MCF-10A cells was determined by CCK-8 assay. The radiosensitivity enhancement effect of FePd@CNTs nanocomposites on MCF-7 cells was assessed by CCK-8 assay, flow cytometry and clony formation assay. Results FePd nanospheres were successfully modified on the surface of CNTs by chemical reduction method. FePd@CNTs nanocomposites showed a low toxicity to MCF-10A cells (IC50=738.3μg/m), and effectively enhanced the effect of X-ray radiation on MCF-7 cells (sensibilization ratio=1.22). Conclusion FePd@CNTs nanocomposites exhibit a promising potential for treating breast cancer and enhancing radiosensitivity effect.
Fund:Elekta-Wuhan University Medical Physics Teaching and Research Fund (250000200)
Corresponding Authors:
Quan Hong, Email:csp6606@sina.com
Cite this article:
Kong Xiangyue,Lyu Meng,Peng Xiaoqing et al. Radiosensitivity enhancement effect of FePd@CNTs nanocomposites on MCF-7 cells[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 841-845.
Kong Xiangyue,Lyu Meng,Peng Xiaoqing et al. Radiosensitivity enhancement effect of FePd@CNTs nanocomposites on MCF-7 cells[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 841-845.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI:10.3322/caac.21492. [2] Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy[J]. Bioimpacts, 2014, 4(1):15-20. DOI:10.5681/bi.2014.003. [3] Lomax ME, Folkes LK, O′Neill P. Biological consequences of radiation-induced DNA damage:relevance to radiotherapy[J]. Clin Oncol, 2013, 25(10):578-585. DOI:10.1016/j.clon.2013.06.007. [4] Hainfeld JF, Dilmanian FA, Slatkin DN, et al. Radiotherapy enhancement with gold nanoparticles[J]. J Pharm Pharmacol, 2008, 60(8):977-985. DOI:10.1211/jpp.60.8.0005. [5] Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity[J]. Adv Drug Deliv Rev, 2015, 91(1):3-6. DOI:10.1016/j.addr.2015.01.002. [6] Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy:a summary of various approaches to enhance radiosensitization in cancer[J]. Transl Cancer Res, 2013, 2(4):330-342. DOI:10.3978/j.issn.2218-676X.2013.08.06. [7] Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles[J]. Clin Transl Oncol, 2013, 15(8):593-601. DOI:10.1007/s12094-013-1003-7. [8] Ma J, Xu R, Sun J, et al. Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment[J]. J Nanosci Nanotechnol, 2013, 13(2):1472-1475. DOI:10.1166/jnn.2013.6087. [9] Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles:a promising material for future cancer therapy?[J]. Nanotechnology, 2010, 21(8):85103. DOI:10.1088/0957-4484/21/8/085103. [10] Le Duc G, Miladi I, Alric C, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles[J]. ACS Nano, 2011, 5(12):9566-9574. DOI:10.1021/nn202797h. [11] Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles[J]. Future Oncol, 2012, 8(9):1167-1181. DOI:10.2217/FON.12.96. [12] Mirjolet C, Papa AL, Créhange G, et al. The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma:a proof-of-concept[J]. Radiother Oncol, 2013, 108(1):136-142. DOI:10.1016/j.radonc.2013.04.004. [13] Klein S, Sommer A, Distel LV, et al. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation[J]. Biochem Biophys Res Commun, 2012, 425(2):393-397. DOI:10.1016/j.bbrc.2012.07.108. [14] Juzenas P, Chen W, Sun YP, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer[J]. Adv Drug Deliv Rev, 2008, 60(15):1600-1614. DOI:10.1016/j.addr.2008.08.004. [15] Ranji-Burachaloo H, Gurr PA, Dunstan DE, et al. Cancer treatment through nanoparticle-facilitated fenton reaction[J]. ACS Nano, 2018, 12(12):11819-11837. DOI:10.1021/acsnano.8b07635.