1Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; 2XinHua College of Sun Yat-sen University, Guangzhou 510520, China; 3Department of Oncology, Air Force Hospital of Southern Theater Command of the People's Liberation Army, Guangzhou 510602,China
AbstractObjective Based on the AAPM TG-263, a Content-Based Standardizing Nomenclatures (CBSN) was proposed to explore the feasibility of its standardization verification for organs at risk (OAR) of nasopharyngeal carcinoma (NPC). Methods The radiotherapy structure files of 855 patients with nasopharyngeal carcinoma (NPC) receiving intensity-modulated radiotherapy (IMRT) from 2017 to 2019(15 of whom showed clinical anomalous structures) were retrospectively collected and processed. The Matlab self-developed software was used to obtain the image position, geometric features, first-order gray histogram, and the Gray-level Co-occurrence Matrix′s texture features of the OAR contour outlined by the doctor to establish the CBSN Location Verification model and CBSN Knowledge Library. Fisher discriminant analysis was employed to establish a CBSN OAR classification model, which was evaluated using self-validation, cross-validation, and external validation, respectively. Results 99%(69/70) of the simulated anomalous structures were outside the 90% reference range of the CBSN Knowledge Library and the characteristic parameters significantly differed among different OARs (all P<0.001). The accuracy rates of self-validation, cross-validation and external verification of the CBSN OAR classification model were 92.1%, 92.0% and 91.8%, respectively. Fourteen cases of clinical abnormal structures were successfully detected by CBSN with an accuracy rate of 93%(14/15). In the simulation test, the accuracy of the left and right location verification reached 100%, such as detecting the right eye lens named Len_L. Conclusion CBSN can be used for OAR verification of NPC, providing reference for multi-center cooperation and standardized radiotherapy of NPC patients.
Fund:Natural Science Foundation of Guangdong Province (2017A030310217);Pearl River S&T Nova Program of Guangzhou (201710010162);Innovation and Entrepreneurship Training Program for College Student Innovation and Entrepreneurship (20191390109, 201713902050)
Corresponding Authors:
Yang Xin, Email:yangxin@sysucc.org.cn
Cite this article:
. Study of standardizing nomenclatures for organs at risk of nasopharyngeal carcinoma via the contouring content-based image retrieval method[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 803-810.
. Study of standardizing nomenclatures for organs at risk of nasopharyngeal carcinoma via the contouring content-based image retrieval method[J]. Chinese Journal of Radiation Oncology, 2021, 30(8): 803-810.
[1] Mayo CS, Moran JM, Bosch W, et al. Report No. 263-standarizing nomenclatures in radiation oncology[R/OL][2020-04-02].https://www.aapm.org/pubs/reports/detail.asp?docid=171. [2] Mayo CS, Moran JM, Bosch W, et al. American association of physicists in medicine task group 263:standardizing nomenclatures in radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2018, 100(4):1057-1066. DOI:10.1016/j.ijrobp.2017.12.013. [3] Matuszak MM, Moran JM, Xiao Y, et al. AAPM task group 263:tackling standardization of nomenclature for radiation therapy[J]. Med Phys, 2015, 42(6):3231. DOI:10.1118/1.4923956. [4] Santanam L, Hurkmans C, Mutic S, et al. Standardizing naming conventions in radiation oncology[J]. Int J Radiat Oncol Biol Phys, 2012, 83(4):1344-1349. DOI:10.1016/j.ijrobp.2011.09.054. [5] Denton TR, Shields LBE, Hahl M, et al. Guidelines for treatment naming in radiation oncology[J]. J Appl Clin Med Phys, 2015, 17(2):123-138. DOI:10.1120/jacmp.v17i2.5953. [6] Meissner WA. What′s in a name?—The standardization of tumor nomenclature[J]. Int J Radiat Oncol Biol Phys, 1976, 1(11):1245-1246. DOI:10.1016/0360-3016(76)90103-6. [7] Mayo CS, Pisansky TM, Petersen IA, et al. Establishment of practice standards in nomenclature and prescription to enable construction of software and databases for knowledge-based practice review[J]. Pract Radiat Oncol, 2016, 6(4):e117-e126. DOI:10.1016/j.prro.2015.11.001. [8] 游依琪,郑万佳,郑智满,等. 头颈肿瘤调强放疗结构命名标准化的方法与实现[J]. 中国医学物理学杂志,2019, 36(2):146-151. DOI:10.3969/j.issn.1005-202X.2019.02.005. You YQ, Zheng WJ, Zheng ZM, et al. Method and implementation of structure nomenclatures standardization of head-neck tumor in IMRT[J]. Chin J Med Phys, 2019, 36(2):146-151. DOI:10.3969/j.issn.1005-202X.2019.02.005. [9] 郑万佳,麦秀滢,游依琪,等. 宫颈癌放疗结构命名标准化的实现[J]. 中华放射肿瘤学杂志, 2021, 30(2):180-185. DOI:10.3760/cma.j.cn113030-20191014-00418. Zheng WJ, Mai XY, You YQ, et al. Nomenclature standardization of radiotherapy in cervical cancer[J]. Chin J Radiat Oncol, 2021, 30(2):180-185. DOI:10.3760/cma.j.cn113030-20191014-00418. [10] You Y, Zheng W, Huang S, et al. A method of nomenclature standardization in radiotherapy for difference tumors[C]//2018 AAPM annual meeting. Tennessee:AAPM, 2018. [11] You Y, Huang S, Lu S, et al. Standardization of nomenclature for radiotherapy of head and neck tumor in two institutions[C]//2018 AAPM annual meeting. Tennessee:AAPM, 2018. [12] 黄慎,游依琪,魏伟,等. 基于多中心鼻咽癌放疗结构命名标准化的实现与验证[C]//2018全国医学物理大会(CSMP)论文集. 北京:中国生物医学工程学会医学物理分会, 2018:320-321. Huang S, You YQ, Wei W, et al. Realization and verification of naming standardization of radiotherapy based on multi-center nasopharyngeal carcinoma[C]//2018 China national congress of medical physics (CSMP). Beijing:Medical Physics Branch of the Chinese Society of Biomedical Engineering, 2018:320-321. [13] Cao Y, Steffey S, He J, et al. Medical image retrieval:a multimodal approach[J]. Cancer Informat, 2014, 13(Suppl 3):125-136. DOI:10.4137/CIN. S14053. [14] Akgül CB, Rubin DL, Napel S, et al. Content-based image retrieval in radiology:current status and future directions[J]. J Digit Imaging, 2011, 24(2):208-222. DOI:10.1007/s10278-010-9290-9. [15] Mai X, Huang S, Huang S, et al. Validation of production standardizing radiation therapy structures names by the content-based standardizing nomenclatures (CBSN) in radiation oncology[C]//2019 AAPM annual meeting. Tennessee:AAPM, 2019. [16] Law MYY, Liu B. Informatics in radiology:DICOM-RT and its utilization in radiation therapy[J]. Radiographics, 2009, 29(3):655-667. DOI:10.1148/rg.293075172. [17] Spezi E, Lewis DG, Smith CW. A DICOM-RT-based toolbox for the evaluation and verification of radiotherapy plans[J]. Phys Medd Biol, 2002, 47(23):4223-4232. DOI:10.1088/0031-9155/47/23/308. [18] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification[J]. Studies Med Commun, 1973, SMC-3(6):610-621. DOI:10.1109/TSMC.1973.4309314. [19] 汪娟,刘哲,宋余庆,等. 基于改进的GLCM甲状腺纹理特征提取与分析[J]. 计算机工程与应用,2018, 54(23):176-182. Wang J, Liu Z, Song YQ, et al. Extraction and analysis of thyroid texture features based on improved GLCM[J]. Comput Engineer Appl, 2018, 54(23):176-182. [20] Torheim T, Malinen E, Kvaal K, et al. Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines[J]. IEEE Trans Med Imaging, 2014, 33(8):1648-1656. DOI:10.1109/TMI.2014.2321024. [21] Nagarajan MB, Huber MB, Schlossbauer T, et al. Classification of small lesions in dynamic breast MRI:eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time[J]. Mach Vis Appl, 2013, 24(7):1371-1381. DOI:10.1007/s00138-012-0456-y. [22] Schuler T, Kipritidis J, Eade T, et al. Big data readiness in radiation oncology:an efficient approach for re-labelling radiotherapy structures with their TG-263 standard name in real-world data sets[J]. Adv Radiat Oncol, 2019, 4(1):191-200. DOI:10.1016/j.adro.2018.09.013. [23] Cardan R, Popple R, Covington E. Open source software for TG-263 compliance[C]//2019 AAPM annual meeting. Tennessee:AAPM, 2019. [24] Rozario T, Long T, Chen M, et al. Towards automated patient data cleaning using deep learning:a feasibility study on the standardization of organ labeling.2017:arXiv:1801. 00096[DB/OL][2020-04-01]. https://ui. adsabs. harvard. edu/abs/2018arXiv180100096R. [25] Hui CB, Nourzadeh H, Watkins WT, et al. Quality assurance tool for organ at risk delineation in radiation therapy using a parametric statistical approach[J]. Med Phys, 2018, 45(5):2089-2096. DOI:10.1002/mp.12835. [26] Sleeman WIV, Nalluri J, Khajamoinuddin S, et al. Machine learning method to automate structure name mapping[C]//2019 AAPM annual meeting. Tennessee:AAPM, 2019. [27] Rhee D, Nguyen C, Netherton T, et al. TG-263-Net:a deep learning model for organs-at-risk nomenclature standardization[C]//2019 AAPM annual meeting. Tennessee:AAPM, 2019. [28] Duda RO, Hart PE, Stork DG. Pattern classification[M]. New York:John Wiley& Sons, 2001. DOI:10.1007/s00357-007-0015-9. [29] 龙斌,周光华,杨新辉,等. 大分割三维适形放疗治疗鼻咽癌鼻咽复发再程放疗的不良反应及疗效评估[J]. 中华放射肿瘤学杂志,2019, 28(3):173-179. DOI:10.3760/cma.j.issn.1004-4221.2019.03.003. Long B, Zhou GH, Yang XH, et al. Clinical efficacy and safety of hypofractionated three-dimensional conformal radiotherapy in the treatment of recurrent nasopharyngeal carcinoma[J]. Chin J Radiat Oncol, 2019, 28(3):173-179. DOI:10.3760/cma.j.issn.1004-4221.2019.03.003.