[an error occurred while processing this directive] | [an error occurred while processing this directive]
Clinical application of surface guided radiotherapy
Li Tantan, Huan Fukui, Dai Jianrong
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract By using optical surface guided radiotherapy technology, the principle of three-dimensional body surface imaging is employed to obtain body surface images in a real-time manner. By comparing with reference images, it can verify the position before treatment, and realize real-time monitoring and gated treatment during treatment. It is a non-invasive and non-radiation technology, which is mainly applied in the treatment of intracranial, head and neck, chest and abdomen, breast, extremities and pediatric tumors. The research progresses consist of four aspects including less body surface markers, less restraint fixation, safer collision prediction and more accurate real-time tracking.
Fund:Fundamental Research Funds for the Central Universities (3332019051)
Corresponding Authors:
Dai Jianrong, Email:dai_jianrong@163.com
Cite this article:
Li Tantan,Huan Fukui,Dai Jianrong. Clinical application of surface guided radiotherapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(6): 648-652.
Li Tantan,Huan Fukui,Dai Jianrong. Clinical application of surface guided radiotherapy[J]. Chinese Journal of Radiation Oncology, 2021, 30(6): 648-652.
[1] 肖青,钟仁明. 光学表面成像(OSI)在放疗中的应用与展望[J]. 中华放射肿瘤学杂志, 2018, 27(2):214-217.DOI:10.3760/cma.j.issn.1004-4221.2018.02.020. Xiao Qing, Zhong Renming. Application and prospect of optical surface imaging technique in radiotherapy[J]. Chin J Radiat Oncol, 2018, 27(2):214-217.DOI:10.3760/cma.j.issn.1004-4221.2018.02.020. [2] Jeremy DP, Paxton AB, Waghorm B, et al. Surface guided radiation therapy[M]. New York:CRC Press,2020. [3] Kalet AM, Cao N, Smith WP, et al. Accuracy and stability of deep inspiration breath hold in gated breast radiotherapy-a comparison of two tracking and guidance systems[J]. Phys Med, 2019, 60(3):174-181.DOI:10.1016/j.ejmp.2019.03.025. [4] Clover K, Oultram S, Adams C, et al. Disruption to radiation therapy sessions due to anxiety among patients receiving radiation therapy to the head and neck area can be predicted using patient self-report measures[J]. Psychooncology, 2011, 20(12):1334-1341.DOI:10.1002/pon.1854. [5] Oultram S, Findlay N, Clover K, et al. A comparison between patient self-report and radiation therapists' ability to identify anxiety and distress in head and neck cancer patients requiring immobilization for radiation therapy[J]. J. Radiother. Pract, 2012, 11(2):74-82. DOI:10.1017/S1460396911000136. [6] Nixon JL, Cartmill B, Turner J, et al. Exploring the prevalence and experience of mask anxiety for the person with head and neck cancer undergoing radiotherapy[J]. J Med Radiat Sci, 2018, 65(4):282-290.DOI:10.1002/jmrs.308. [7] Radaideh KM. A dosimetric study of skin toxicity induced by 3-D conventional and intensity-modulated radiotherapy techniques using immobilization mask for treatment of head-and-neck (nasopharyngeal cancer) carcinoma:a prospective study[J]. J. Radiother. Pract, 2019, 18(2):132-137.DOI:10.1017/S1460396918000523. [8] Zhao B, Maquilan G, Jiang S, et al. Minimal mask immobilization with optical surface guidance for head and neck radiotherapy[J]. J Appl Clin Med Phys, 2018, 19(1):17-24.DOI:10.1002/acm2.12211. [9] Gurney-Champion OJ, McQuaid D, Dunlop A, et al. MRI-based assessment of 3D intrafractional motion of head and neck cancer for radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 100(2):306-316.DOI:10.1016/j.ijrobp.2017.10.016. [10] van Asselen B, Raaijmakers CPJ, Lagendijk JJW, et al. Intrafraction motions of the larynx during radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2003, 56(2):384-390.DOI:10.1016/S0360-3016(02)04572-8. [11] Zhao B, Park YK, Gu X, et al. Surface guided motion management in glottic larynx stereotactic body radiation therapy[J]. Radiother Oncol, 2020, 153:236-242. DOI:10.1016/j.radonc.2020.08.027. [12] Klein EE, Hanley J, Bayouth J, et al. Task group 142 report:quality assurance of medical acceleratorsa[J]. Med Phys, 2009, 36(9):4197-4212. DOI:10.1118/1.3190392. [13] Mancosu P, Fogliata A, Stravato A, et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study[J]. Med Dosim, 2016, 41(2):173-179. DOI:10.1016/j.meddos.2015.12.003. [14] Swinnen ACC,Öllers MC, Loon Ong C, et al. The potential of an optical surface tracking system in non-coplanar single isocenter treatments of multiple brain metastases[J]. J Appl Clin Med Phys, 2020, 21(6):63-72. DOI:10.1002/acm2.12866. [15] Li G, Ballangrud A, Chan M, et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring[J]. J Appl Clin Med Phys, 2015, 16(4):149-162. DOI:10.1120/jacmp.v16i4.5416. [16] Covington EL, Stanley DN, Fiveash JB, et al. Surface guided imaging during stereotactic radiosurgery with automated delivery[J]. J Appl Clin Med Phys,2020, 21(12):90-95. DOI:10.1002/acm2.13066. [17] Pan H,Cerviño LI, Pawlicki T, et al. Frameless, real-time, surface imaging-guided radiosurgery:clinical outcomes for brain metastases[J]. Neurosurgery, 2012, 71(4):844-851.DOI:10.1227/NEU.0b013e3182647ad5. [18] Cardan RA, Popple RA, Fiveash J. A priori patient-specific collision avoidance in radiotherapy using consumer grade depth cameras[J]. Med Phys, 2017, 44(7):3430-3436.DOI:10.1002/mp.12313. [19] Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy:the report of AAPM Task Group 101[J]. Med Phys, 2010, 37(8):4078-4101.DOI:10.1118/1.3438081. [20] Solberg TD, Balter JM, Benedict SH, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy:executive summary[J]. Pract. Radiat. Oncol, 2012, 2(1):2-9. DOI:10.1016/j.prro.2011.06.014. [21] Heinzerling JH, Hampton CJ, Robinson M, et al. Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen[J]. J Appl Clin Med Phys, 2020, 21(5):48-55. DOI:10.1002/acm2.12852. [22] Mercier C, Sprangers A, Verellen D. OC-0194:Evaluation of an optical surface monitoring system for intrafractional movement during SABR[J]. Radiother Oncol, 2018, 127 suppl:S104-S105. DOI:10.1016/S0167-8140(18)30504-8. [23] Ricotti R, Ciardo D, Fattori G, et al. Intra-fraction respiratory motion and baseline drift during breast Helical Tomotherapy[J]. Radiother Oncol, 2017, 122(1):79-86.DOI:10.1016/j.radonc.2016.07.019. [24] van Mourik A, van Kranen S, den Hollander S, et al. Effects of setup errors and shape changes on breast radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2011, 79(5):1557-1564.DOI:10.1016/j.ijrobp.2010.07.032. [25] Kügele M, Mannerberg A, Nørring Bekke S, et al. Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy[J]. J Appl Clin Med Phys, 2019, 20(9):61-68. DOI:10.1002/acm2.12700. [26] Shah AP, Dvorak T, Curry MS, et al. Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging[J]. Pract Radiat Oncol, 2013, 3(1):16-25. DOI:10.1016/j.prro.2012.03.002. [27] Reitz D, Carl G, Schönecker S, et al. Real-time intra-fraction motion management in breast cancer radiotherapy:analysis of 2028 treatment sessions[J]. Radiat Oncol, 2018, 13(1):128. DOI:10.1186/s13014-018-1072-4. [28] Walter F, Freislederer P, Belka C, et al. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM)[J]. Radiat Oncol, 2016, 11(1):154.DOI:10.1186/s13014-016-0728-1. [29] Hoisak JDP, Pawlicki T. The role of optical surface imaging systems in radiation therapy[J]. Semin Radiat Oncol, 2018, 28(3):185-193.DOI:10.1016/j.semradonc.2018.02.003. [30] Gierga DP, Turcotte JC, Sharp GC, et al. A voluntary breath-hold treatment technique for the left breast with unfavorable cardiac anatomy using surface imaging[J]. Int J Radiat Oncol Biol Phys, 2012, 84(5):e663-e668. DOI:10.1016/j.ijrobp.2012.07.2379. [31] Alderliesten T, Sonke JJ, Betgen A, et al. Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2013, 85(2):536-542. DOI:10.1016/j.ijrobp.2012.04.004. [32] Sueyoshi M, Olch AJ, Liu KX, et al. Eliminating daily shifts, tattoos, and skin marks:streamlining isocenter localization with treatment plan embedded couch values for external beam radiation therapy[J]. Pract Radiat Oncol, 2019, 9(1):e110-e117.DOI:10.1016/j.prro.2018.08.011. [33] Gierga DP, Turcotte JC, Tong LW, et al. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging[J]. Pract Radiat Oncol, 2014, 4(4):261-266.DOI:10.1=016/j.prro.2013.09.001. [34] Dickie CI, Parent AL, Chung PWM, et al. Measuring interfractional and intrafractional motion with cone beam computed tomography and an optical localization system for lower extremity soft tissue sarcoma patients treated with preoperative intensity-modulated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2010, 78(5):1437-1444.DOI:10.1016/j.ijrobp.2009.09.054. [35] Manger RP, Paxton AB, Pawlicki T, et al. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery[J]. Med Phys, 2015, 42(5):2449-2461.DOI:10.1118/1.4918319.