[an error occurred while processing this directive] | [an error occurred while processing this directive]
The role and application prospect of cGAS-STING signaling pathway in tumor treatment
Gao Yanping1, Jiang Xueping1, Liu Xingyu1, Chen Jiarui1, Gong Yan2, Xie Conghua1
1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; 2Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
Abstract Novel cancer immunotherapy can treat tumors through regulating innate immunity and adaptive immune system. cGMP-AMP synthase (cGAS) is a key regulator of innate immune response to both exogenous and endogenous DNA. After recognizing the cytoplasmic DNA, cGAS produces the second messenger cyclic GMP-AMP (cGAMP), which subsequently combines with the adaptor STING (also known as MITA, MPYS and ERIS) to mediate innate immunity by inducing the production of type I interferons and inflammatory cytokines. Recent studies have revealed that the cGAS/STING signaling pathway can be activated by tumor-derived DNA and by-products of genomic instability and affect the incidence and development of tumors, which plays a critical role in the natural antitumor immunity across cancer types and immune checkpoint blockade therapy. In this article, current understanding of cGAS/STING signaling pathway in tumors was summarized,the pivotal role in tumor immunity and radiotherapy was highlighted, and the potential targeted or alternative therapy of this signaling pathway was reviewed.
Fund:National Natural Science Foundation of China (81572967,81773236);National Project for Improving the Ability of Diagnosis and Treatment of Difficult Diseases, National Key Clinical Speciality Construction Program of China ([2013]544);Health Commission of Hubei Province Scientific Research Project (WJ2019h002)
Gao Yanping,Jiang Xueping,Liu Xingyu et al. The role and application prospect of cGAS-STING signaling pathway in tumor treatment[J]. Chinese Journal of Radiation Oncology, 2021, 30(5): 518-522.
Gao Yanping,Jiang Xueping,Liu Xingyu et al. The role and application prospect of cGAS-STING signaling pathway in tumor treatment[J]. Chinese Journal of Radiation Oncology, 2021, 30(5): 518-522.
[1] Akira S. Pathogen recognition by innate immunity and its signaling[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85(4):143-156. DOI:10.2183/pjab.85.143. [2] Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6):805-820. DOI:10.1016/j.cell.2010.01.022. [3] Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J]. Nature, 2008, 455(7213):674-678. DOI:10.1038/nature07317. [4] Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4):538-550. DOI:10.1016/j.immuni.2008.09.003. [5] Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science, 2013, 339(6121):826-830. DOI:10.1126/science.1229963. [6] Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013, 339(6121):786-791. DOI:10.1126/science.1232458. [7] Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5):830-842. DOI:10.1016/j.immuni.2014.10.017. [8] Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity[J]. Nature, 2017, 548(7668):461-465. DOI:10.1038/nature23449. [9] Harding SM, Benci JL, Irianto J, et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei[J]. Nature, 2017, 548(7668):466-470. DOI:10.1038/nature23470. [10] GLÜck S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9):1061-1070. DOI:10.1038/ncb3586. [11] Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer[J]. Nature, 2017, 550(7676):402-406. DOI:10.1038/nature24050. [12] Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA[J]. Science, 2013, 339(6121):826-830. DOI:10.1126/science.1229963. [13] Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227):aaa2630. DOI:10.1126/science.aaa2630. [14] Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215(5):1287-1299. DOI:10.1084/jem.20180139. [15] Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1[J]. J Virol, 2014, 88(10):5328-5341. DOI:10.1128/JVI.00037-14. [16] Ching LM, Cao Z, Kieda C, et al. Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid[J]. Br J Cancer, 2002, 86(12):1937-1942. DOI:10.1038/sj.bjc.6600368. [17] Roberts ZJ, Ching LM, Vogel SN. IFN-beta-dependent inhibition of tumor growth by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA)[J]. J Interferon Cytokine Res, 2008, 28(3):133-139. DOI:10.1089/jir.2007.0992. [18] Zhao L, Ching LM, Kestell P, et al. The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice[J]. Br J Cancer, 2002, 87(4):465-470. DOI:10.1038/sj.bjc.6600479. [19] Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7):1018-1030. DOI:10.1016/j.celrep.2015.04.031. [20] Kim S, Li L, Maliga Z, et al. Anticancer flavonoids are mouse-selective STING agonists[J]. ACS Chem Biol, 2013, 8(7):1396-1401. DOI:10.1021/cb400264n. [21] Wang H, Hu S, Chen X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci USA, 2017, 114(7):1637-1642. DOI:10.1073/pnas.1621363114. [22] Tang CH, Zundell JA, Ranatunga S, et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells[J]. Cancer Res, 2016, 76(8):2137-2152. DOI:10.1158/0008-5472. CAN-15-1885. [23] Li T, Cheng H, Yuan H, et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response[J]. Sci Rep, 2016, 6:19049. DOI:10.1038/srep19049. [24] Temizoz B, Kuroda E, Ohata K, et al. TLR9 and STING agonists synergistically induce innate and adaptive type-Ⅱ IFN[J]. Eur J Immunol, 2015, 45(4):1159-1169. DOI:10.1002/eji.201445132. [25] Chandra D, Quispe-Tintaya W, Jahangir A, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer[J]. Cancer Immunol Res, 2014, 2(9):901-910. DOI:10.1158/2326-6066. CIR-13-0123. [26] Wang Z, Celis E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice[J]. Cancer Immunol Immunother, 2015, 64(8):1057-1066. DOI:10.1007/s00262-015-1713-5. [27] Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade[J]. Sci Transl Med, 2015, 7(283):283ra52. DOI:10.1126/scitranslmed.aaa4306. [28] Nakamura T, Miyabe H, Hyodo M, et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma[J]. J Control Release, 2015, 216:149-157. DOI:10.1016/j.jconrel.2015.08.026. [29] Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5:5166. DOI:10.1038/ncomms6166. [30] Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity[J]. Immunity, 2015, 42(2):332-343. DOI:10.1016/j.immuni.2015.01.012. [31] Luthra P, Aguirre S, Yen BC, et al. Topoisomerase Ⅱ inhibitors induce DNA damage-dependent interferon responses circumventing ebola virus immune evasion[J]. mBio, 2017, 8(2):e00368-17. DOI:10.1128/mBio.00368-17. [32] Erdal E, Haider S, Rehwinkel J, et al. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1[J]. Genes Dev, 2017, 31(4):353-369. DOI:10.1101/gad.289769.116. [33] Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5):843-852. DOI:10.1016/j.immuni.2014.10.019. [34] Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8:15618. DOI:10.1038/ncomms15618. [35] Liang H, Deng L, Hou Y, et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance[J]. Nat Commun, 2017, 8(1):1736. DOI:10.1038/s41467-017-01566-5. [36] Hou Y, Liang H, Rao E, et al. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy[J]. Immunity, 2018, 49(3):490-503.e4. DOI:10.1016/j.immuni.2018.07.008.