[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on radiosensitivity-related genes and biomarkers in esophageal carcinoma
Wang Xiaofeng, Liang Jun
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
Abstract Radiotherapy is one of the most important treatment methods for esophageal carcinoma. However, radiation resistance is the biggest problem and obstacle for patients with esophageal carcinoma treated with radiotherapy. Radiosensitivity is the focus and difficulty in the study of tumor radiobiology. A variety of genes and their expression products affect the radiosensitivity of esophageal carcinoma. Consequently, if the genes and biomarkers that determine radiosensitivity can be detected before radiotherapy, it will play a vital role in investigating the mechanism of radiotherapy sensitization, targeted therapy and radiotherapy efficacy prediction to guide individual therapy. In this article, major genes and biomarkers associated with esophageal carcinoma radiosensitivity in recent years were reviewed from different signal transduction pathways.
Wang Xiaofeng,Liang Jun. Research progress on radiosensitivity-related genes and biomarkers in esophageal carcinoma[J]. Chinese Journal of Radiation Oncology, 2021, 30(4): 419-423.
Wang Xiaofeng,Liang Jun. Research progress on radiosensitivity-related genes and biomarkers in esophageal carcinoma[J]. Chinese Journal of Radiation Oncology, 2021, 30(4): 419-423.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. DOI:10.3322/caac.21492. [2] Li DJ, Li HW, He B, et al. Patterns of failure after involved field radiotherapy for locally advanced esophageal squamous cell carcinoma[J]. J BUON, 2016, 21(5):1268. [3] Makino T, Yamasaki M, Miyata H, et al. p53 Mutation status predicts pathological response to chemoradiotherapy in locally advanced esophageal cancer[J]. Ann Surg Oncol, 2010, 17(3):804-811. DOI:10.1245/s10434-009-0786-9. [4] Suzuki T, Yajima S, Ishioka N, et al. Prognostic significance of high serum p53 antibody titers in patients with esophageal squamous cell carcinoma[J]. Esophagus, 2018, 15(4):294-300. DOI:10.1007/s10388-018-0629-5. [5] Zhang Q, Zhang C, He J, et al. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma[J]. Tumour Biol, 2015, 36(3):2135-2142. DOI:10.1007/s13277-014-2823-y. [6] Zang C, Liu X, Li B, et al. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma[J]. Oncotarget, 2017, 8(7):11228-11238. DOI:10.18632/oncotarget.14495. [7] Lu YR, Song J, Zhabihula BX, et al. 2-Methoxyestradiol promotes radiosensitivity of esophageal squamous cell carcinoma by suppressing hypoxia-inducible factor-1α expression[J]. Eur Rev Med Pharmacol Sci, 2019, 23(24):10785-10795. DOI:10.26355/eurrev_201912_19781. [8] Zhang WL, Liu ZK, Wang JM, et al. Knockdown of USP28 enhances the radiosensitivity of esophageal cancer cells via the c-Myc/hypoxia-inducible factor-1 alpha pathway[J]. J Cell Biochem, 2019, 120(1):201-212. DOI:10.1002/jcb.27305. [9] Helbig L, Koi L, Brüchner K, et al. Hypoxia-inducible factor pathway inhibition resolves tumor hypoxia and improves local tumor control after single-dose irradiation[J]. Int J Radiat Oncol Biol Phys, 2014, 88(1):159-166. DOI:10.1016/j.ijrobp.2013.09.047. [10] Ogawa K, Chiba I, Morioka T, et al. Clinical significance of HIF-1alpha expression in patients with esophageal cancer treated with concurrent chemoradiotherapy[J]. Anticancer Res, 2011, 31(6):2351-2359. [11] Cheng JC, Shimada Y, Watanabe G, et al. High serum levels of vascular endothelial growth factor-A and transforming growth factor-β1 before neoadjuvant chemoradiotherapy predict poor outcomes in patients with esophageal squamous cell carcinoma receiving combined modality therapy[J]. Ann Surg Oncol, 2014, 21(7):2361-2368. DOI:10.1245/s10434-014-3611-z. [12] Wang J, Yu JP, Ni XC, et al. Pathological response and serum VEGF changes during chemoradiotherapy for esophageal carcinoma[J]. Medicine, 2019, 98(20):e15627. DOI:10.1097/MD.0000000000015627. [13] McDonnell CO, Harmey JH, Bouchier-Hayes DJ, et al. Effect of multimodality therapy on circulating vascular endothelial growth factor levels in patients with oesophageal cancer[J]. Br J Surg, 2001, 88(8):1105-1109. DOI:10.1046/j.0007-1323.2001.01838.x. [14] Wang YL, Yuan Y, Luo XX, et al. Genetic variants in EGFR/PLCE1 pathway are associated with prognosis of esophageal squamous cell carcinoma after radical resection[J]. Curr Med Sci, 2019, 39(3):385-390. DOI:10.1007/s11596-019-2047-x. [15] Yu Y, Guan H, Jiang L, et al. Nimotuzumab, anEGFR-targeted antibody, promotes radiosensitivity of recurrent esophageal squamous cell carcinoma[J]. Int J Oncol, 2020, 56(4):945-956. DOI:10.3892/ijo.2020.4981. [16] Lian X, Kajiyama Y, Sugano M, et al. Radiosensitization of Her-2-positive esophageal cancer cells by pyrotinib[J]. Biosci Rep, 2020, 40(2):BSR20194167. DOI:10.1042/BSR20194167. [17] Yoon HH, Catalano PJ, Murphy KM, et al. Genetic variation in DNA-repair pathways and response to radiochemotherapy in esophageal adenocarcinoma:a retrospective cohort study of the eastern cooperative oncology group[J]. BMC Cancer, 2011, 11:176. DOI:10.1186/1471-2407-11-176. [18] Warnecke-Eberz U, Vallböhmer D, Alakus H, et al. ERCC1 and XRCC1 gene polymorphisms predict response to neoadjuvant radiochemotherapy in esophageal cancer[J]. J Gastrointest Surg, 2009, 13(8):1411-1421. DOI:10.1007/s11605-009-0881-z. [19] Cheng J, Liu W, Zeng X, et al. XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma[J]. Cancer Sci, 2015, 106(12):1678-1686. DOI:10.1111/cas.12820. [20] Huang X, Liu C, Cui Y, et al. Association between XRCC1 and ERCC1 single-nucleotide polymorphisms and the efficacy of concurrent radiochemotherapy in patients with esophageal squamous cell carcinoma[J]. Oncol Lett, 2017, 13(2):704-714. DOI:10.3892/ol.2016.5496. [21] Yu X, Xiao H, Zhao B, et al. DNA repair gene ERCC1 C118T polymorphism predicts sensitivity of recurrent esophageal cancer to radiochemotherapy in a Chinese population[J]. Thorac Cancer, 2015, 6(6):741-748. DOI:10.1111/1759-7714.12251. [22] Lyu X, Zhang M, Li G, et al. PD-1 and PD-L1 Expression predicts radiosensitivity and clinical outcomes in head and neck cancer and is associated with HPV infection[J]. J Cancer, 2019, 10(4):937-948. DOI:10.7150/jca.27199. [23] Chen MF, Chen PT, Chen WC, et al. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression[J]. Oncotarget, 2016, 7(7):7913-7924. DOI:10.18632/oncotarget.6861. [24] Kojima T, Muro K, Francois E, et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer:phase Ⅲ KEYNOTE-181 study[J]. J Clin Oncol, 2019, 37(4 suppl):2. DOI:10.1200/JCO.2019.37.4_suppl.2. [25] Kato K, Cho BC, Takahashi M, et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamouscell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3):a multicentre, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(11):1506-1517. DOI:10.1016/S1470-2045(19)30626-6. [26] Huang J, Xu J, Chen Y, et al. Camrelizumab versus investigator's choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT):a multicentre, randomised, open-label, phase 3 study[J]. Lancet Oncol, 2020, 21(6):832-842. DOI:10.1016/S1470-2045(20)30110-8. [27] 李宝重,陈照丽,周芳,等. 核因子κB向细胞核移位降低食管癌放疗的疗效[J]. 中华肿瘤杂志, 2014, 36(7):485-488. DOI:10.3760/cma.j.issn.0253-3766.2014.07.002. Li BC, Chen ZL, Zhou F, et al. Effect of NF-Kappa B activation on the radiation response of esophageal cancer cells[J]. Chin J Oncol, 2014, 36(7):485-488. DOI:10.3760/cma.j.issn.0253-3766.2014.07.002. [28] Izzo JG, Malhotra U, Wu TT, et al. Association of activated transcription factor nuclear factor Kappab with chemoradiation resistance and poor outcome in esophageal carcinoma[J]. J Clin Oncol, 2006, 24(5):748-754. DOI:10.1200/JCO.2005.03.8810. [29] Jin Y, Xu K, Chen Q, et al. Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway[J]. Exp Cell Res, 2018, 362(2):362-369. DOI:10.1016/j.yexcr.2017.11.037. [30] Chen X, Zhou SC, Xu WZ, et al. Isocitrate dehydrogenase 2 contributes to radiation resistance of oesophageal squamous cell carcinoma via regulating mitochondrial function and ROS/pAKT signalling[J]. Br J Cancer, 2020, 123(1):126-136. DOI:10.1038/s41416-020-0852-4. [31] Chen X, Zhuo SC, Xu WZ, et al. Silencing of S-phase kinase-associated protein 2 enhances radiosensitivity of esophageal cancer cells through inhibition of PI3K/AKT signaling pathway[J]. Genomics, 2020, 112(5):3504-3510. DOI:10.1016/j.ygeno.2020.04.029. [32] Liu B, Wang C, Chen P, et al. RACK1 promotes radiation resistance in esophageal cancer via regulating AKT pathway and Bcl-2 expression[J]. Biochem Biophys Res Commun, 2017, 491(3):622-628. DOI:10.1016/j.bbrc.2017.07.153. [33] Chen H, Yao X, Di X, et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma[J]. Cancer Lett, 2020, 483:114-126. DOI:10.1016/j.canlet.2020.01.037. [34] Zhang Y, Chen W, Wang H, et al. Upregulation of miR-519 enhances radiosensitivity of esophageal squamous cell carcinoma trough targeting PI3K/AKT/mTOR signaling pathway[J]. Cancer Chemother Pharmacol, 2019, 84(6):1209-1218. DOI:10.1007/s00280-019-03922-2. [35] Xie C, Wu Y, Fei Z, et al. MicroRNA-1275 induces radiosensitization in oesophageal cancer by regulating epithelial-to-mesenchymal transition via Wnt/β-catenin pathway[J]. J Cell Mol Med, 2020, 24(1):747-759. DOI:10.1111/jcmm.14784. [36] Li ZY, Li HF, Zhang YY, et al. Value of long non-coding RNA Rpph1 in esophageal cancer and its effect on cancer cell sensitivity to radiotherapy[J]. World J Gastroenterol, 2020, 26(15):1775-1791. DOI:10.3748/wjg.v26.i15.1775. [37] Wang M, Wang L, He X, et al. lncRNA CCAT2 promotes radiotherapy resistance for human esophageal carcinoma cells via the miR-145/p70s6K1 and p53 pathway[J]. Int J Oncol, 2020, 56(1):327-336. DOI:10.3892/ijo.2019.4929. [38] Lin J, Liu Z, Liao S, et al. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy[J]. Genomics, 2020, 112(3):2173-2185. DOI:10.1016/j.ygeno.2019.12.013. [39] Kim HS, Kim SC, Kim SJ, et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data forNCI-60cancer cells[J]. BMC Genomics, 2012, 13:348. DOI:10.1186/1471-2164-13-348. [40] Zhang Q, Bing Z, Tian J, et al. Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer[J]. Oncol Lett, 2019, 17(6):5377-5388. DOI:10.3892/ol.2019.10240. [41] Eschrich S, Zhang H, Zhao H, et al. Systems biology modeling of the radiation sensitivity network:a biomarker discovery platform[J]. Int J Radiat Oncol Biol Phys, 2009, 75(2):497-505. DOI:10.1016/j. ijrobp.2009.05.056.