[an error occurred while processing this directive] | [an error occurred while processing this directive]
Characterization of imaging distortion of high-field magnetic resonance imaging-guided linear accelerator (MR-Linac) and its influencing factors
Wang Bin, Liu Hongdong, Liu Biaoshui, Li Yongbao, Ding Shouliang, Huang Xiaoyan
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060,China
AbstractObjective To characterize the imaging distortion of the 1.5T magnetic resonance imaging-guided linear accelerator (MR-Linac) and to analyze the influence of MR-Linac and peripheral devices on the geometric distortion. Methods Specialized MRI imaging distortion phantom and analysis software were applied. The baseline of imaging distortion within diameter spherical volume (DSV) around the center of the magnet was established. The influence of the beam generation system, mechanical system and peripheral devices on the imaging distortion was analyzed. The long-term stability of imaging distortion was tested on the MR-Linac. Results Imaging distortion of the MR-Linac was increased with the increasing distance to the center of the magnet. Within DSV 400mm, few test points surpassed 1mm imaging distortion in 3D directions. However, imaging distortion surpassed 2mm in part of region within DSV 400-500mm, with the largest distortion over 7mm. Imaging distortion of the MR-Linac remained unchanged within 7 months after installation. And the influence of the MR-Linac and peripheral devices on the imaging distortion was only observed in the overall largest distortion within DSV 400-500mm. Conclusions Cautions should be taken during the application of high-field MR-Linac in patients whose tumor location is over 20 cm from the ISO center. Imaging distortion of the MR-Linac remains stable within 7 months after installation. The influence of the MR-Linac and peripheral devices on the imaging distortion is trivial, which can be neglected in clinical practice.
Wang Bin,Liu Hongdong,Liu Biaoshui et al. Characterization of imaging distortion of high-field magnetic resonance imaging-guided linear accelerator (MR-Linac) and its influencing factors[J]. Chinese Journal of Radiation Oncology, 2021, 30(2): 146-150.
Wang Bin,Liu Hongdong,Liu Biaoshui et al. Characterization of imaging distortion of high-field magnetic resonance imaging-guided linear accelerator (MR-Linac) and its influencing factors[J]. Chinese Journal of Radiation Oncology, 2021, 30(2): 146-150.
[1] Maspero M, van den Berg CAT, Landry G, et al. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method[J]. Phys Med Biol, 2017, 62(24):9159-9176. DOI:10.1088/1361-6560/aa9677. [2] Kemppainen R, Suilamo S, Tuokkola T, et al. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy:a feasibility study for pelvic cancers[J]. Acta Oncol, 2017, 56(6):792-798. DOI:10.1080/0284186X.2017.1293290. [3] Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy[J]. Radiat Oncol, 2017, 12(1):28. DOI:10.1186/s13014-016-0747-y. [4] Guerreiro F, Burgos N, Dunlop A, et al. Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning[J]. Phys Med, 2017, 35:7-17. DOI:10.1016/j.ejmp.2017.02.017. [5] Olmi P, Fallai C, Colagrande S, et al. Staging and follow-up of nasopharyngeal carcinoma:magnetic resonance imaging versus computerized tomography[J]. Int J Radiat Oncol Biol Phys, 1995, 32(3):795-800. DOI:10.1016/0360-3016(94)00535-S. [6] Juliano A, Moonis G. Computed tomography versus magnetic resonance in head and neck cancer:when to use what and image optimization strategies[J]. Magn Reson Imaging Clin N Am, 2018, 26:63-84. DOI:10.1016/j.mric.2017.08.005. [7] Voss SD. Staging and following common pediatric malignancies:MRI versus CT versus functional imaging[J]. Pediatr Radiol, 2018, 48(9):1324-1336. DOI:10.1007/s00247-018-4162-4. [8] Bhatnagar P, Subesinghe M, Patel C, et al. Functional imaging for radiation treatment planning, response assessment, and adaptive therapy in head and neck cancer[J]. Radiographics, 2013, 33(7):1909-1929. DOI:10.1148/rg.337125163. [9] Thorwarth D. Functional imaging for radiotherapy treatment planning:current status and future directions-a review[J]. Br J Radiol, 2015, 88(1051):20150056. DOI:10.1259/bjr.20150056. [10] Adjeiwaah M, Bylund M, Lundman JA, et al. Quantifying the effect of 3t magnetic resonance imaging residual system distortions and patient-induced susceptibility distortions on radiation therapy treatment planning for prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 100(2):317-324. DOI:10.1016/j.ijrobp.2017.10.021. [11] Chen Z, Ma CM, Paskalev K, et al. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer[J]. Phys Med Biol, 2006, 51(6):1393-1403. DOI:10.1088/0031-9155/51/6/002. [12] Gustafsson C, Nordström F, Persson E, et al. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate[J]. Phys Med Biol, 2017, 62(8):2976-2989. DOI:10.1088/1361-6560/aa5fa2. [13] Adjeiwaah M, Bylund M, Lundman JA, et al. Dosimetric impact of MRI distortions:a study on head and neck cancers[J]. Int J Radiat Oncol Biol Phys, 2019, 103(4):994-1003. DOI:10.1016/j.ijrobp.2018.11.037. [14] Wang D, Strugnell W, Cowin G, et al. Geometric distortion in clinical MRI systems Part I:evaluation using a 3D phantom[J]. Magn Reson Imaging, 2004, 22(9):1211-1221. DOI:10.1016/j.mri.2004.08.012. [15] Torfeh T, Hammoud R, Perkins G, et al. Characterization of 3D geometric distortion of magnetic resonance imaging scanners commissioned for radiation therapy planning[J]. Magn Reson Imaging, 2016, 34(5):645-653. DOI:10.1016/j.mri.2016.01.001. [16] Huang KC, Cao Y, Baharom U, et al. Phantom-based characterization of distortion on a magnetic resonance imaging simulator for radiation oncology[J]. Phys Med Biol, 2016, 61(2):774-790. DOI:10.1088/0031-9155/61/2/774. [17] Ranta I, Kemppainen R, Keyrilainen J, et al. Quality assurance measurements of geometric accuracy for magnetic resonance imaging-based radiotherapy treatment planning[J]. Phys Med, 2019, 62:47-52. DOI:10.1016/j.ejmp.2019.04.022. [18] Nketiah G, Selnaes KM, Sandsmark E, et al. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis[J]. Magn Reson Med, 2018, 79(5):2524-2532. DOI:10.1002/mrm.26899. [19] Hong C, Lee DH, Han BS. Characteristics of geometric distortion correction with increasing field-of-view in open-configuration MRI[J]. Magn Reson Imaging, 2014, 32(6):786-790. DOI:10.1016/j.mri.2014.02.007. [20] Tijssen RHN, Philippens MEP, Paulson ES, et al. MRI commissioning of 1.5T MR-linac systems-a multi-institutional study[J]. Radiother Oncol, 2019, 132:114-120. DOI:10.1016/j.radonc.2018.12.011. [21] Pappas EP, Seimenis I, Dellios D, et al. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning[J]. Phys Med Biol, 2018, 63(13):135006. DOI:10.1088/1361-6560/aac7bf.