[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research status of hyperthermia and energy metabolism of tumor cells in hypoxic microenvironment
Shi Fan1, Sun Qiaozhen1, Zhou Xuexiao1, Xu Ting2, Wang Shengzhi2
1School of Stomatology, Qingdao University, Qingdao 266003, China; 2Department of Oral and Maxillofacial Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 266400, China
Abstract Metabolic reprogramming is a malignancy hallmark, which refers to the ability of cancer cells to alter metabolic and nutrient acquisition modes in order to support the energy demands for accomplishing the rapid growth, dissemination, metastasis and obtain the “building blocks” needed to maintain cell division. When solid tumors are exposed to low pH, low oxygen and tumor microenvironment with nutrient deficiencies,the hypoxia-inducible factor-1 can be activated, which mediates the remodeling of metabolic patterns in tumor cells, namely, energy is obtained by circulating intracellular components (removing substrates such as proteins and lipid) or by utilizing adaptive metabolic reprogramming (such as glycolysis, autophagy and lipid metabolism, etc.). As a treatment scheme based on local heating of tumors, hyperthermia has a variety of anticancer mechanisms and can be used in combination with radiotherapy, chemotherapy and biological immune therapy. In this review, we briefly discussed the metabolic remodeling model mediated by hypoxia-inducible factor 1 in a hypoxia microenvironment, described the possible regulatory mechanism of hyperthermia on hypoxia-inducible factor-1 and prospected the application of hyperthermia in oral and maxillofacial tumors.
Corresponding Authors:
Wang Shengzhi, Email:Wangsz916@163.com
Cite this article:
Shi Fan,Sun Qiaozhen,Zhou Xuexiao et al. Research status of hyperthermia and energy metabolism of tumor cells in hypoxic microenvironment[J]. Chinese Journal of Radiation Oncology, 2021, 30(1): 102-106.
Shi Fan,Sun Qiaozhen,Zhou Xuexiao et al. Research status of hyperthermia and energy metabolism of tumor cells in hypoxic microenvironment[J]. Chinese Journal of Radiation Oncology, 2021, 30(1): 102-106.
[1] Oei AL, Vriend LEM, Krawczyk PM, et al. Targeting therapy-resistant cancer stem cells by hyperthermia[J]. Int J Hyperthermia, 2017, 33(4):419-427. DOI:10.1080/02656736.2017.1279757. [2] Kallio PJ, Pongratz I, Gradin K, et al. Activation of hypoxia-inducible factor 1alpha:posttranscriptional regulation and conformational change by recruitment of the arnt transcription factor[J]. Pro Nat Acad Sci, 1997, 94(11):5667. DOI:10.1073/pnas.94.11.5667. [3] Pan G, Jin L, Shen W, et al. Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats[J]. Life Sci, 2020, 243:117279. DOI:10.1016/j.lfs.2020.117279. [4] Makino Y, Cao R, Svensson K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression[J]. Nature, 2001, 414(6863):550-554. DOI:10.1038/35107085. [5] Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities[J]. Clin Cancer Res, 2009, 15(21):6479-6483. DOI:10.1158/1078-0432. CCR-09-0889. [6] Lee GY, Chun Y, Shin H, et al. Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia[J]. Oncotarget, 2016, 7(35):57442-57451. DOI:10.18632/oncotarget.10684. [7] Shimura T, Noma N, Sano Y, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells[J]. Radiother Oncol, 2014, 112(2):302-307. DOI:10.1016/j.radonc.2014.07.015. [8] Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3[J]. Autophagy, 2007, 3(6):616-619. DOI:10.4161/auto.4892. [9] Wu DH, Jia CC, Chen J, et al. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma[J]. Tumour Biol, 2014, 35(12):12225-12233. DOI:10.1007/s13277-014-2531-7. [10] Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions[J]. Gastroenterology, 2012, 143(1):177-187. DOI:10.1053/j.gastro.2012.04.009. [11] VandeKopple MJ, Wu J, Auer EN, et al. HILPDA regulates lipid metabolism, lipid droplet abundance, and response to microenvironmental stress in solid tumors[J]. Mol Cancer Res, 2019, 17(10):2089-2101. DOI:10.1158/1541-7786.mcr-18-1343. [12] Denko N, Schindler C, Koong A, et al. Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment[J]. Clin Cancer Res, 2000, 6(2):480-487. [13] Gimm T, Wiese M, Teschemacher B, et al. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1[J]. FASEB J, 2010, 24(11):4443. DOI:10.1096/fj.10-159806. [14] DeBose-Boyd RA. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase[J]. Cell Res, 2008, 18(6):609-621. DOI:10.1038/cr.2008.61. [15] Robichon C, Dugail I. De novo cholesterol synthesis at the crossroads of adaptive response to extracellular stress through SREBP[J]. Biochimie, 2007, 89(2):260-264. DOI:10.1016/j.biochi.2006.09.015. [16] Dong F, Mo Z, Eid W, et al. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1[J]. PLoS One, 2014, 9(11):e113789. DOI:10.1371/journal.pone.0113789. [17] Wu H, Ding Z, Hu D, et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death[J]. J Pathol, 2012, 227(2):189-199. DOI:10.1002/path.3978. [18] Nguyen TB, Louie SM, Daniele JR, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy[J]. Developmental Cell, 2017, 42(1):9-21. DOI:10.1016/j.devcel.2017.06.003. [19] Mylonis I, Sembongi H, Befani C, et al. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression[J]. J Cell Sci, 2012, 125(Pt 14):3485-3493. DOI:10.1242/jcs.106682. [20] Shioya M, Takahashi T, Ishikawa H, et al. Expression of hypoxia-inducible factor 1alpha predicts clinical outcome after preoperative hyperthermo-chemoradiotherapy for locally advanced rectal cancer[J]. J Radiat Res, 2011, 52(6):821-827. DOI:10.1269/jrr.11117. [21] Yu X, Fang Y, Ding X, et al. Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine[J]. Nephrology, 2012, 17(1):58-67. DOI:10.1111/j.1440-1797.2011.01498.x. [22] Jackson IL, Batinic-Haberle I, Sonveaux P, et al. ROS production and angiogenic regulation by macrophages in response to heat therapy[J]. Int J Hyperthermia, 2006, 22(4):263-273. DOI:10.1080/02656730600594027. [23] McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate[J]. Front Oncol, 2014, 4:249. DOI:10.3389/fonc.2014.00249. [24] Kletkiewicz H, Hyjek M, Jaworski K, et al. Activation of hypoxia-inducible factor-1α in rat brain after perinatal anoxia:role of body temperature[J]. Int J Hyperthermia, 2018, 34(6):824-833. DOI:10.1080/02656736.2017.1385860. [25] Guo Y, Ma J, Wu L, et al. Hyperthermia-induced NDRG2 upregulation inhibits the invasion of human hepatocellular carcinoma via suppressing ERK1/2 signaling pathway[J]. PLoS One, 2013,8(4):e61079. DOI:10.1371/journal.pone.0061079. [26] Ma J, Liu W, Guo H, et al. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma[J]. Breast Cancer Res, 2014, 16(2):R27. DOI:10.1186/bcr3628. [27] Yang Y, Yang CL, Zhao ZJ, et al. Microwave hyperthermia enhances the sensitivity of lung cancer cells to gemcitabine through reactive oxygen speciesinduced autophagic death[J]. Oncol Rep, 2019, 41(5):3100-3110. DOI:10.3892/or.2019.7085. [28] Piehler S, Dahring H, Grandke J, et al. Iron oxide nanoparticles as carriers for DOX and magnetic hyperthermia after intratumoral application into breast cancer in mice:impact and future perspectives[J]. Nanomaterials, 2020, 10(6):1016. DOI:10.3390/nano10061016. [29] Cedrowska E, Pruszyński M,GawedaW, et al. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225 Ac as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer[J]. Molecules, 2020,25(5):1025. DOI:10.3390/molecules25051025. [30] Singh A, Jain S, Sahoo SK. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy:an approach towards enhanced attenuation of tumor[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110:110695. DOI:10.1016/j.msec.2020.110695. [31] Raouf I, Khalid S, Khan A, et al. A review on numerical modeling for magnetic nanoparticle hyperthermia:progress and challenges[J]. J Therm Biol, 2020, 91:102644. DOI:10.1016/j.jtherbio.2020.102644. [32] Yang R, Tang Q, Miao F, et al. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice[J]. Int J Nanomedicine, 2015, 10:7345-7358. DOI:10.2147/IJN. S93758. [33] Lim ZW, Varma VB, Ramanujan RV, et al. Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer[J]. Acta Biomater, 2020, 110:221-230. DOI:10.1016/j.actbio.2020.04.024. [34] Talaat RM, Abo-Zeid TM, Abo-Elfadl MT, et al. Combined hyperthermia and radiation therapy for treatment of hepatocellular carcinoma[J]. Asian Pac J Cancer P, 2019, 20(8):2303-2310. DOI:10.31557/APJCP.2019.20.8.2303. [35] van den Tempel N, Odijk H, van Holthe N, et al. Heat-induced BRCA2 degradation in human tumours provides rationale for hyperthermia-PARP-inhibitor combination therapies[J]. Int J Hyperthermia, 2018, 34(4):407-414. DOI:10.1080/02656736.2017.1355487. [36] Orsolic N, Odeh D, Jembrek MJ, et al. Interactions between cisplatin and quercetin at physiological and hyperthermic conditions on cancer cells in vitro and in vivo[J]. Molecules, 2020, 25(14):3271. DOI:10.3390/molecules25143271. [37] Yang W, Han GH, Shin H, et al. Combined treatment with modulated electro-hyperthermia and an autophagy inhibitor effectively inhibit ovarian and cervical cancer growth[J]. Int J Hyperthermia, 2018, 36(1):9-20. DOI:10.1080/02656736.2018.1528390. [38] Dos Santos PCM, Feuser PE, Cordeiro AP, et al. Antitumor activity associated with hyperthermia and 4-nitrochalcone loaded in superparamagnetic poly (thioether-ester) nanoparticles[J]. J Biomat Sci Polymer, 2020, 31(15):1895-1911. DOI:10.1080/09205063.2020.1782699. [39] Lee SY, Kim JH, Han YH, et al. The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma[J]. Int J Hyperthermia, 2018, 34(7):953-960. DOI:10.1080/02656736.2018.1423709. [40] Mahmood J, Alexander AA, Samanta S, et al. A combination of radiotherapy, hyperthermia, and immunotherapy inhibits pancreatic tumor growth and prolongs the survival of mice[J]. Cancers, 2020, 12(4):1015. DOI:10.3390/cancers12041015. [41] Mahmoudi K, Bouras A, Bozec D, et al. Magnetic hyperthermia therapy for the treatment of glioblastoma:a review of the therapy′s history, efficacy and application in humans[J]. Int J Hyperthermia, 2018, 34(8):1316-1328. DOI:10.1080/02656736.2018.1430867. [42] Rezaie P, Khoei S, Khoee S, et al. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87mg glioblastoma cell line[J]. Int J Radiat Biol, 2018, 94(11):1027-1037. DOI:10.1080/09553002.2018.1495855. [43] Liang B, Zuo D, Yu K, et al. Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108:110460. DOI:10.1016/j.msec.2019.110460. [44] Ren G, Ju H, Tian Z, et al. Ultrasound hyperthermia induces apoptosis in head and neck squamous cell carcinoma:an in vitro study[J]. Med Oral Patol Oral Cir Bucal, 2017, 22(3):e289-e296. DOI:10.4317/medoral.21245.