[an error occurred while processing this directive] | [an error occurred while processing this directive]
Effect of hyperthermia on immune cells and immune-related cytokines in tumor immune microenvironment
Zhou Xuexiao1,2, Shen Pei1,2, Wang Shengzhi2, Shi Fan1,2, Sun Qiaozhen1,2, Xu Ting2
1School of Stomatology of Qingdao University, Qingdao 266003, China; 2Department of Oral and Maxillofacial Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China.
Abstract With the in-depth study of tumor hyperthermia and tumor immune microenvironment (TIME), the role of hyperthermia in TIME has captivated increasing attention from scholars in recent years. Based upon recent research progress at home and abroad, the effect and mechanism of hyperthermia on several major immune cells and immune-related cytokines in the TIME were reviewed in this article. Comprehensive and deep understanding of the regulation of hyperthermia on the TIME could provide new ideas and methods for tumor treatment.
Fund:Yantai Science and Technology Project(2018SFGY106)
Corresponding Authors:
Wang Shengzhi, Email:Wangsz916@163.com
Cite this article:
Zhou Xuexiao,Shen Pei,Wang Shengzhi et al. Effect of hyperthermia on immune cells and immune-related cytokines in tumor immune microenvironment[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1130-1134.
Zhou Xuexiao,Shen Pei,Wang Shengzhi et al. Effect of hyperthermia on immune cells and immune-related cytokines in tumor immune microenvironment[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1130-1134.
[1] Guo J, Men CJ, Wang SZ, et al. Influence of thermo chemotherapy on the activity of cytotoxic T lymphocyte in oral maxillofacial cancer patients[J]. West China J Stomatol, 2007(5):441-443. [2] Ando K, Suzuki Y, Kaminuma T, et al. Tumor-specific CD8-positive T cell-mediated antitumor immunity is implicated in the antitumor effect of local hyperthermia[J]. Int J Hyperthermia, 2018, 35(1):226-231. DOI:10.1080/02656736.2018.1492027. [3] Ge X, Zhao Y, Chen C, et al. Cancer immunotherapies targeting tumor-associated regulatory T cells[J]. Onco Targets Ther, 2019, 12:11033-11044. DOI:10.2147/OTT. S231052. [4] Yang X, Fan L, Song J, et al. Effect of synchronization of thermotherapy and chemoradiotherapy on cervical cancer in middle and late stage and CD+4T cells dysequilibrium[J]. Mod J Integrat Trad Chin West Med, 2016, 25(26):2871-2874. [5] Gu Y, Liu Y, Fu L, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG[J]. Nature Med, 2019, 25(2):312-322. DOI:10.1038/s41591-018-0309-y. [6] Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma[J]. Nature, 2020, 577(7791):556-560. DOI:10.1038/s41586-019-1906-8. [7] Lee S, Son B, Park G, et al. Immunogenic effect of hyperthermia on enhancing radiotherapeutic efficacy[J]. Int J Mol Sci, 2018, 19(9):2795. DOI:10.3390/ijms19092795. [8] Hietanen T, Kapanen M, Kellokumpu-Lehtinen P. Natural killer cell viability after hyperthermia alone or combined with radiotherapy with or without cytokines[J]. Anticancer Res, 2018, 38(2):655. DOI:10.21873/anticanres.12269. [9] Frey B, Weiss EM, Rubner Y, et al. Old and new facts about hyperthermia-induced modulations of the immune system[J]. Int J Hyperthermia, 2012, 28(6):528-542. DOI:10.3109/02656736.2012.677933. [10] Dayanc BE, Beachy SH, Ostberg JR, et al. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses[J]. Int J Hyperthermia, 2008, 24(1):41-56. DOI:10.1080/02656730701858297. [11] Jeong H, Hwang I, Kang SH, et al. Tumor-associated macrophages as potential prognostic biomarkers of invasive breast cancer[J]. J breast cancer, 2019, 22(1):38-51. DOI:10.4048/jbc.2019.22.e5. [12] Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer[J]. Trends in Immunology, 2019, 40(4):310-327. DOI:10.1016/j.it.2019.02.003. [13] Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655):495-499. DOI:10.1038/nature22396. [14] Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy[J]. J Immunother Cancer, 2016, 4:51. DOI:10.1186/s40425-016-0156-7. [15] Tomasovic SP, Barta M, Klostergaard J. Temporal dependence of hyperthermic augmentation of macrophage-TNF production and tumor cell-TNF sensitization[J]. Int J Hyperthermia, 1989, 5(5):625-639. DOI:10.3109/02656738909140486. [16] Buchanan P, Frey B, Ott O, et al. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages[J]. Radiother oncol, 2011, 101(1):109-115. DOI:10.1016/j.radonc.2011.05.056. [17] Guo D, Chen Y, Wang S, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6[J]. Immunology, 2018, 154(1):132-143. DOI:10.1111/imm.12874. [18] Zhang Y, He M, Wang Y, et al. Modulators of the balance between M1 and M2 Macrophages during pregnancy[J]. Front Immunol, 2017, 8:120. DOI:10.3389/fimmu.2017.00120. [19] He K, Jia S, Lou Y, et al. Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity[J]. Cell Death Disease, 2019, 10(3):216. DOI:10.1038/s41419-019-1459-7. [20] Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J]. Nature Nanotechnol, 2016,11(11):986-994. DOI:10.1038/nnano.2016.168. [21] Truxova I, Kasikova L, Hensler M, et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients[J]. J Immunother Cancer, 2018, 6(1):139. DOI:10.1186/s40425-018-0446-3. [22] 樊国华,李悦,袁泽婷,等. 树突状细胞在肿瘤中的研究进展[J]. 临床肿瘤学杂志, 2020, 25(1):86-90. Fan GH, Li Y, Yuan ZT, et al. The research progress of dendritic cells in tumors[J]. Chin Clin Oncol, 2020, 25(1):86-90. [23] Liu F, Hu Z, Qiu L, et al. Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation[J]. J Transl Med, 2010, 8:7. DOI:10.1186/1479-5876-8-7. [24] 祝徐军. 表达CCL20的重组腺病毒联合热疗对大肠癌的免疫治疗及机制[D]. 上海:第二军医大学, 2016. Zhu XJ. Immunotherapy and mechanisms of Ad5-CCL20 combined with hyperthermia therapy for colorectal cancer[D]. Shanghai:Second Military Medical University, 2016. [25] Ostberg JR, Repasky EA. Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function[J]. Cancer Immunol Immunother, 2006, 55(3):292-298. DOI:10.1007/s00262-005-0689-y. [26] Li B, Garstka MA, Li Z. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor[J]. Mol Immunol, 2020, 117:201-215. DOI:10.1016/j.molimm.2019.11.014. [27] Han X, Shi H, Sun Y, et al. CXCR2 expression on granulocyte and macrophage progenitors under tumor conditions contributes to mo-MDSC generation via SAP18/ERK/STAT3[J]. Cell Death Dis, 2019, 10(8):515-598. DOI:10.1038/s41419-019-1837-1. [28] Shen P, Huang S, He M, et al. Reduction of myeloid-derived suppressor cells in peripheral blood by local hyperthermia in patients with advanced solid tumors[J]. J Clin Oncol, 2011, 29(15 Suppl):e21058. DOI:10.1200/jco.2011.29.15_suppl.e21058. [29] Zhu J, Zhang Y, Zhang A, et al. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular HSP70-dependent MDSC differentiation[J]. Sci Rep, 2016, 6:27136. DOI:10.1038/srep27136. [30] Hao Z, Yi L, Chuhang L, et al. Changes of TGFβ/Smad signaling expression in oral squamous cell carcinoma after hyperthermia[J]. J Pract Stomatol, 2019, 35(1):24-27. [31] Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression[J]. Cell Tissue Res, 2012, 347(1):85-101. DOI:10.1007/s00441-011-1199-1. [32] 王仲,周新伏,唐铁钢,等. 热化疗对晚期恶性肿瘤患者外周血CD+8CD+28 T细胞表达的影响及临床意义[J]. 肿瘤防治研究, 2011, 38(12):1405-1408. DOI:10.3971/j.issn.1000-8578.2011.12.016. Wang Z, Zhou XF, Tang TG, et al. Influence and clinical significance of thermo chemotherapy on expression of CD+8CD+28 subtype cells in peripheral blood of patients with advanced malignant tumors[J]. Cancer Res Prevent Treat, 2011, 38(12):1405-1408. DOI:10.3971/j.issn.1000-8578.2011.12.016. [33] 张俊平,潘宏铭,方勇,等. 射频治疗对荷H22肝癌小鼠脾淋巴细胞免疫功能的影响[J]. 癌症, 2006(1):34-39. [34] Bevanda M, Orsolic N, Basic I, et al. Prevention of peritoneal carcinomatosis in mice with combination hyperthermal intraperitoneal chemotherapy and IL-2[J]. Int J Hyperthermia, 2009, 25(2):132-140. DOI:10.1080/02656730802520697. [35] 王斌,孙小单,刘玉侠,等. 加热对肿瘤细胞微环境的影响及意义[J]. 癌症进展, 2017, 15(10):1150-1152. [36] Chen T, Guo J, Han C, et al. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway[J]. J Immunol, 2009, 182(3):1449-1459. DOI:10.4049/jimmunol.182.3.1449. [37] Leek RD, Harris AL, Lewis CE. Cytokine networks in solid human tumors:regulation of angiogenesis[J]. J Leukoc Biol, 1994, 56(4):423-435. DOI:10.1002/jlb.56.4.423. [38] De Maio A, Vazquez D. Extracellular heat shock proteins[J]. Shock, 2013, 40(4):239-246. DOI:10.1097/SHK.0b013e3182a185ab. [39] De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the stress observation system:a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to ferruccio ritossa[J]. Cell Stress Chaperones, 2011, 16(3):235-249. DOI:10.1007/s12192-010-0236-4.