AbstractObjective To determine the role of type Ⅱ alveolar epithelial stem cells (AEC Ⅱ) in radiation-induced pulmonary injury and investigate the potential mechanism by observing the dynamic changes in the expression levels of anti-prosurfactant protein C (proSP-C) proSP-C (AEC Ⅱ biomarker), homeobox only protein X (HOPX, type I alveolar epithelial cell biomarker) or vimentin (a mesenchymal marker) and transforming growth factor β1(TGF-β1), a profibrotic cytokine. Methods Eight-week old C57BL/6j female mice were exposed to X-ray thoracic irradiation. Mouse lungs were collected at 8 different time points of 24 h, 1 week, 1 to 6 months after irradiation. The histopathological changes of the lungs at different time points were observed with H& E staining to determine the time of formation of pulmonary fibrosis. In addition, the co-expression of proSP-C with HOPX or vimentin in AEC Ⅱ was confirmed by immunofluorescence staining to track AEC Ⅱ phenotypes at different injury phases following thoracic irradiation. The expression levels of those proteins and TGF-β1 were quantitatively detected by Western blot. Results After thoracic exposure to a single dose of 20 Gy X-ray for 3 months, the fibrotic lesions in the lungs could be noted. The co-expression of proSP-C with vimentin or HOPX could be observed in AEC Ⅱ. Western blot demonstrated that the expression levels of TGF-β1 and those proteins were also changed along with the lung injury. Conclusion AEC Ⅱ can be differentiated into mesenchymal-like cells after X-ray irradiation due to the up-regulated expression of TGF-β1, which is a potential cause of radiation-induced pulmonary fibrosis.
Fund:National Natural Science Foundation of China (81673097);Henan Science and Technology Research Plan Project (132102310200);Henan Medical Science and Technology Research Project (201602171)
Xiao Ziting,Tian Jian,Zhu Yanyan et al. The role of lung type Ⅱ epithelial stem cell differentiation in radiation-induced pulmonary fibrosis[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1102-1109.
Xiao Ziting,Tian Jian,Zhu Yanyan et al. The role of lung type Ⅱ epithelial stem cell differentiation in radiation-induced pulmonary fibrosis[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1102-1109.
[1] Raghu G, Rochwerg B, Zhang Y, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline:treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline[J]. Am J Respir Crit Care Med, 2015, 192(2):e3-19. DOI:10.1164/rccm.201506-1063sT. [2] 中华医学会呼吸病学分会间质性肺疾病学组. 特发性肺纤维化诊断和治疗中国专家共识[J]. 中华结核和呼吸杂志, 2016, 39(6):427-431. DOI:10.3760/cma.j.issn.1001-0939.2016.06.005. Interstitial Lung Diseases Group of Respiratory Diseases Branch of Chinese Medical Association. Chinese expert consensus on diagnosis and treatment of idiopathic pulmonary fibrosis[J]. Chin J Tuber Respir Dis, 2016, 39(6):427-432. D0I:10.3760/cma.j.issn.1001-0939.2016.06.005. [3] 王绿化,傅小龙,陈明,等.放射性肺损伤的诊断及治疗[J].中华放射肿瘤学杂志, 2015, 24(1):4-9.DOI:10.3760/cma.j.issn.1004-4221.2015.01.003. Wang LH, Fu XL, Chen M, et al. Diagnosis and treatment of radiation-induced lung injury[J]. Chin J Radiat Oncol, 2015, 24(1):4-9 DOI:10.3760/cma.j.issn. 1004-4221.2015.01.003. [4] 殷蔚伯,李晔雄,王绿化,等. 肿瘤放射治疗手册[M].北京:中国协和医科大学出版社, 2014:129. Yin WB, Li YX, Wang LH, et al. Handbook of tumor radiotherapy[M]. Beijing:Peking Union Medical College Press, 2014:129. [5] 杨燕光,王金云,蔡晶, 等. 局部晚期非小细胞肺癌调强放疗与三维适形放疗的剂量学及临床疗效分析[J]. 中国肿瘤, 2014, 23(10):873-877. DOI:10.11735/j.issn.1004-0242.2014.10. A018. Yang YG, Wang JY, Cai J, et al. Dosimetry and clinical efficacy analysis of intensity modulated radiotherapy and three-dimensional conformal radiotherapy for locally advanced non-small cell lung cancer[J]. Chin J Oncol, 2014,23(10):873-877. DOI:10.11735/j.issn.1004-0242.2014.10. A018. [6] Lee JH, Kim J, Gludish D, et al. Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein C-expressing lung cells[J]. Am J Respir Cell Mol Biol, 2013, 48(3):288-298. DOI:10.1165/rcmb.2011-04030C. [7] 郭文琼,宋富强,陈炜, 等. 波形蛋白在细胞中的潜在功能[J]. 生命的化学, 2012, 32(4):337-340. DOI:CNKI:SUN:SMHX.0.2012-04-009. Guo WQ, Song FQ, Chen W, et al. The potential function of vimentin in cells[J]. Chemist Life, 2012, 32(4):337-340 DOI:CNKI:SUN:SMHX.0.2012-04-009. [8] Van Obberghen-Schilling E, Roche NS, Flanders KC, et al. Transforming growth factor beta 1 positively regulates its own expression in normal and transformed cells[J]. J Biol Chem, 1988, 263(16):7741-7746. [9] 金淑清,浦予飞,裘莹. HOX基因的研究进展[J]. 癌症进展, 2011(2):154-158. DOI:10.3969/j.issn.1672-1535.2011.02.010. Jin SQ, Pu YF, Qiu Y. Research progress of Hox gene[J]. Cancer Prog, 2011(2):154-158. DOI:10.3969/j.issn.1672-1535.2011.02.010. [10] 鞠大鹏,詹丽杏. 脂肪细胞分化及其调控的研究进展[J]. 中国细胞生物学学报, 2010(5):690-695. DOI:CNKI:SUN:XBZZ.0.2010-05-005. Ju DP, Zhan LX. Research progress on adipocyte differentiation and its regulation[J]. Acta Cell Biol Sinica, 2010(5):690-695. DOI:CNKI:SUN:XBZZ.0.2010-05-005. [11] Shin CH, Liu ZP, Passier R, et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein[J]. Cell, 2002, 110(6):725-735. DOI:10.1016/s0092-8674(02)00933-9. [12] Chen F, Kook H, Milewski R, et al. Hop is an unusual homeobox gene that modulates cardiac development[J]. Cell, 2002, 110(6):713-723. DOI:10.1016/s0092-8674(02)00932-7. [13] Yin Z, Gonzales L, Kolla V, et al. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression[J]. Am J Physiol Lung Cell Mol Physiol, 2006, 291(2):L191-199. DOI:10.1152/ajplung.00385.2005. [14] Ota C, Ng-Blichfeldt JP, Korfei M, et al. Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis[J]. Sci Rep, 2018, 8(1):12983. DOI:10.1038/s41598-018-31214-x. [15] Johnston CJ, Piedboeuf B, Baggs R, et al. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis[J]. Radiat Res, 1995, 142(2):197-203. [16] Rube CE, Uthe D, Schmid KW, et al. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation[J]. Int J Radiat Oncol Biol Phys, 2000, 47(4):1033-1042. DOI:10.1016/s0360-3016(00)00482-x. [17] Adamson IY, and Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen[J]. Lab Invest, 1974, 30(1):35-42. [18] Cabral-Anderson LJ, Evans MJ, Freeman G. Effects of NO2 on the lungs of rats. I. Morphology[J]. Exp Mol Pathol, 1977, 27(3):353-365. DOI:10.1016/0014-4800(77)90006-5. [19] Evans MJ, Cabral-Anderson LJ, and Freeman G. Effects of NO2 on the lungs of aging rats. Ⅱ[J]. Exp Mol Pathol, 1977, 27(3):366-376. DOI:10.1016/0014-4800(77)90007-7. [20] Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis[J]. Am J Pathol, 1988, 130(2):377-383. [21] Haschek WM, Witschi H. Pulmonary fibrosis-a possible mechanism[J]. Toxicol Appl Pharmacol, 1979, 51(3):475-487. DOI:10.1016/0041-008x (79)90372-7. [22] Stahlman MT, Besnard V, Wert SE, et al. Expression of ABCA3 in developinglung and other tissues[J]. J Histochem Cytochem, 2007, 55(1):71-83. DOI:10.1369/jhc.6A6962.2006. [23] Liebler JM, Marconett CN, Juul N, et al. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(2):L114-120. DOI:10.1152/ajplung.00337.2015. [24] Almeida C, Nagarajan D, Zhao W, et al. The role of alveolar epithelium in radiation-induced lung injury[J/OL]. PLoS One, 2013, 8(1):e53628. DOI:10.1371/journal.pone.0053628. [25] Wang Y, Tang Z, Huang H, et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate[J]. Proc Natl Acad Sci USA, 2018, 115(10):2407-2412. DOI:10.1073/pnas.1719474115. [26] Khalil N, Greenberg AH. The role of TGF-beta in pulmonary fibrosis[J]. Ciba Found Symp, 1991, 157:194-207;discussion 207-111. DOI:10.1002/9780470514061.ch13. [27] John AE, Luckett JC, Tatler AL, et al. Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis[J]. J Nucl Med, 2013, 54(12):2146-2152. DOI:10.2967/jnumed.113.120592. [28] Das S, Kumar M, Negi V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-β in pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2014, 50(5):882-892. DOI:10.1165/rcmb.2013-0195℃. [29] Arribillaga L, Dotor J, Basagoiti M, et al. Therapeutic effect of a peptide inhibitor of TGF-β on pulmonary fibrosis[J]. Cytokine, 2011, 53(3):327-333. DOI:10.1016/j.cyto.2010.11.019.