[an error occurred while processing this directive] | [an error occurred while processing this directive]
Application of radiotherapy with the extension of spinal cord for esophageal cancer
Wei Shengtao1,2, Liu Yang1, Wang xiang1, Zhang Haisan2, Li Dingjie1
1Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; 2Xinxiang City Key Laboratory of Multimodal Brain Imaging, Xinxiang 453002, China
AbstractObjective To analyze the setup and residual errors of spinal cord during online CT-guided radiotherapy for patients with esophageal cancer, and to discuss the necessity of segmental extension of spinal cord. Methods According to the radiotherapy site, 60 cases of esophageal cancer were divided into the neck, chest and abdomen groups, 20 cases in each group. Cervical pleura or vacuum bag was fixed, IMRT technology was adopted, and pre-treatment CT images were obtained by CTVision, and 20 consecutive CT scans were collected for each case. CT images were imported into MIM software. The parameters of the setup errors were processed and extracted. The CT spinal cord was delineated for verification and planning, and the Dice coefficient, Hausdorff maximum distance and centroid coordinate of the delineated spinal cord were processed and extracted. Compatibility anova data were adopted. The calculation formula of the extension margin is MPRV= 1.3 ∑total+0.5 σtotal. Results Residual centroid method was employed. Non-on-line and on-line CT-guided radiotherapy, the extension margins of neck,chest, abdominal spinal cord in the x-, y-and z-axis were 3.86,5.37,6.36 mm;3.45,3.83,4.51 mm;4.05,4.83,7.06 mm,vs,2.85,2.19,2.83 mm;2.32,2.20,2.16 mm;2.86,2.21,2.83 mm, respectively. During residual Hausdorff distance method,non-on-line and on-line CT guided radiotherapy,the extension margins of neck, chest, abdominal spinal cord in the x-, y-and z-axis were 3.10, 5.33,6.15 mm;3.30,3.77,4.61 mm;3.35,4.76,6.87mm,vs,2.12,2.06,2.32 mm;2.12,2.06,2.32 mm;2.12,2.06,2.32 mm,respectively. Conclusion The setup errors and residual errors are different in each segment of spinal cord. Henc, different extension margins should be given.
Corresponding Authors:
Li Dingjie, Email:150304089@qq.com;Zhang Haisan, Email:zhs386@163.com
Cite this article:
Wei Shengtao,Liu Yang,Wang xiang et al. Application of radiotherapy with the extension of spinal cord for esophageal cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1025-1029.
Wei Shengtao,Liu Yang,Wang xiang et al. Application of radiotherapy with the extension of spinal cord for esophageal cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(12): 1025-1029.
[1] 时勇,闫勤英,李东,等. 锥形束CT引导下胸上段食管癌摆位误差及计划靶区外放边界研究[J]. 中国辐射卫生, 2018,27(4):417-420. DOI:10.13491/j.issn.1004-714x.2018.04.035. Shi Y, Yan QY, Li D, et al. Analysis of the upper segment esophageal setup errors and planning target margin based on CBCT for esophageal radiation with thermoplastic film immobilized[J]. Chin J Radiol Heal,2018,27(4):417-420. DOI:10.13491/j.issn.1004-714x.2018.04.035. [2] Guerreiro F, Seravalli E, Janssens GO, et al. Intra-and inter-fraction uncertainties during IGRT for Wilms tumor[J]. Acta Oncologica, 2018, 57(7):941-949. DOI:10.1080/0284186X.2018.1438655. [3] Henke LE, Contreras JA, Mazur T, et al. Delineation of a cardiad PRV using rea-time magnetic resonance imaging for cardiac protection in thoracic and breast radiation therapy[J]. Pract Radiat Oncol, 2018,9(3):e298-e306. DOI:10.1016/j.prro.2018.12.004. [4] 李清,尹勇,佟颖,等. 左侧乳腺癌调强放疗中心跳对左心室肌及左前降支剂量的评估影响[J]. 中华放射医学与防护杂志, 2018, 38(10):747-750. DOI:10.3760/cma.j.issn.0254-5098.2018.10.005. Li Q, Yin Y, Tong Y, et al. The impact of heartbeat on the left ventricular myocardial and the left anterior descending coronary arterial dosimetry following intensity modulated radiotherapy for left-sided breast cancer[J]. Chin J Radiol Mid Protect, 2018, 38(10):747-750. DOI:10.3760/cma.j.issn.0254-5098.2018.10.005. [5] Qian Li, Ying Tong, Yong Yin, et al. Definition of the margin of major coronary artery bifurcations during radiotherapy with electrocardiograph-gated 4d-CT[J]. Phys Med, 2018, 49(1):90-94. DOI:10.1016/j.ejmp.2018.05.008. [6] Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation[J]. Int J Radiat Oncol Biol Phys, 1991, 21(1):109-122. DOI:10.1016/0360-3016(91)90171-y. [7] Dice LR. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3):297-302. DOI:10.2307/1932409. [8] Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the hausdorff distance[J]. IEEE Trans Patt Anal Mach Intel, 1993, 15(9):850-863. DOI:10.1109/34.232073. [9] Bali?B ?Buni?B T, Makovicky E. Determination of the centroid or ‘the best centre' of a coordination polyhedron[J]. Acta Crystallograph Sect B Struct Sci, 1996, 52(1):78-81. DOI:10.1107/s0108768195008251. [10] Remeijer P, Geerlof E, Ploeger L, et a1. 3-D portal image analysis in clinical practice:an evaluation of 2-D and 3-D analysis techniques as applied to 30 prostate cancer patients[J]. Int J Radiat Oncol Biol Phys, 2000, 46(5):1281-1290. DOI:10.1016/s0360-3016(99)00468-x. [11] Stroom JC, Heijmen BJM. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report[J]. Radiother Oncol, 2002,64(1):75-83. DOI:10.1016/s0167-8140(02)00140-8. [12] McKenzie A, van herk M, Mijnheer B. Margins for geomertic uncertainty around oragans at risk in radiotherpy[J]. Radiaother Oncol, 2002, 62(3):299-307. DOI:10.1016/s0167-8140(02)00015-4. [13] Vanherk M. Errors and margins in radiotherapy[J]. Semin Radiat Oncol, 2004, 14(1):52-64. DOI:10.1053/j.semradonc.2003.10.003. [14] Hyde D, Lochray F, Korol R. et al. Spine stereotactic body radiotherapy utilizing cone-beam CT image guidance with a robotic couch intrafraction motion analysis accounting for all six degrees of freedom[J]. Int J Radiat Oncol Biol Phys, 2012, 82(3):555-e562. DOI:10.1016/j.ijrobp.2011.06.1980. [15] Sahgal A, Ma L, Gibbs I, et al. Spinal cord tolerance for stereotactic body radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2010, 77(2):548-553. DOI:10.1016/j.ijrobp.2009.05.023. [16] Bahig H, de Guise J, Vu T, et al. In a heartbeat:an assessment of dynamic dose variation to cardiac structures using dual source computed tomography[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4):950-959. DOI:10.1016/j.ijrobp.2018.01.049. [17] Feng M, Moran JM, Koelling T, et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 79(1):10-18. DOI:10.1016/j.ijrobp.2009.10.058. [18] Hardcastle N, Tomé WA, Cannon DM, et al. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy[J]. Radiat Oncol, 2012, 7(1):90-97. DOI:10.1186/1748-717X-7-90. [19] Sarwar A, English S, Papastavrou Y, et al. Impact of brachial plexus movement during radical radiotherapy for head and neck cancers:the case for a larger planning organ at risk volume margin[J]. J Radiother Pract, 2020, 19(2):103-107. DOI:10.1017/S1460396919000499. [20] Ma L, Sahgal A, Hossain S, et al. Nonrandom intrafraction target motions and general strategy for correction of spine stereotactic body diotherapy[J]. Int J Radiat Oncol Biol Phys, 2009, 75(4):1261-1265. DOI:10.1016/j.ijrobp.2009.04.027. [21] Li XA, Qi XS, Pitterle M, et al. Interfractional variations in patient setup and anatomic change assessed by daily computed tomography[J]. Int J Radiat Oncol Biol Phys, 2007, 68(2):581-591. DOI:10.1016/j.ijrobp.2006.12.024. [22] Mongioj V, Orlandi E, Palazzi M, et al. Set-up errors analyses in IMRT treatments for nasopharyngeal carcinoma to evaluate time trends, PTV and PRV margins[J]. Acta Oncol, 2010, 50(1):61-71. DOI:10.3109/0284186X.2010.509108. [23] Baron CA, Awan MJ, Mohamed AS, et al. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy:quality assurance implications for target volume and organs-at-risk margination using daily CT on-rails imaging[J]. J Appl Clin Med Phys, 2015, 16(2):159-169. DOI:10.1120/jacmp.v16i1.5108. [24] Xing L, Lin Z, Donaldson SS, et al. Dosimetric effects of patient displacement and collimator and gantry angle misalignment on intensity modulated radiation therapy[J]. Radiother Oncol, 2000, 56(1):97-108. DOI:10.1016/s0167-8140(00)00192-4. [25] Delana A, Menegotti L, Bolner A, et al. Impact of residual setup error on parotid gland dose in intensity-modulated radiation therapy with or without planning organ-at-risk margin[J]. Strahlenther Onkol, 2009, 185(7):453-459. DOI:10.1007/s00066-009-1888-9. [26] Astreinidou E, Bel A, Raaijmakers CPJ, et al. Adequate margins for random setup uncertainties in head-and-neck IMRT[J]. Int J Radiat Oncol Biol Phys, 2005, 61(3):938-944. DOI:10.1016/j.ijrobp.2004.11.016. [27] Manning MA, Wu, Q, Cardinale RM, et al. The effect of setup uncertainty on normal tissue sparing with IMRT for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2001, 51(5):1400-1409. DOI:10.1016/s0360-3016(01)01740-0.