AbstractObjective To analyze the 6-year operation faults of PHILIPS Brilliance big bore CT, identify the common problems, make corresponding maintenance plans, reduce the incidence of failures, and carry out simulation prediction of the occurrence rate of failures in the next few years. Methods The failure data of Brilliance big bore CT from June 2012 to June 2018 were collected, and the curve estimation function in SPASS 19.0 software and the pareto diagram were used to analyze the relationship between the number of failures, time and failure types, and the prediction was made. Results A total of 28 faults occurred during the 6-year opeation of Brilliance big bore CT. During the first half year, five times of faults occurred with the highest fault rate and then tended to stabilize. The linear function model was obtained using the curve estimation:y=-0.033x+2.099(y for the number of fault, unit for times, x for the unit of time for half a year), the model of R2=0.003. In the next three years, approximately twice faults occurred within half year. The pareto chart showed that 16 faults occurred during data collection, including 3 faults in the treatment bed and 3 faults in the power supply system, respectively. The accumulative ratio of the above three faults was 71.4%, which were the main fault sources. Conclusion The fault statistical analysis of Brilliance big bore CT is helpful for department maintenance personnel to better understand CT, develop effective maintenance programs, reduce the occurrence of faults, and predict the incidence of faults in the future.
Fund:Henan Joint International Laboratory of Radiation Injury Translational Medicine ([2017]21);Science and Technology Development Plan of Henan Science and Technology Agency in 2015/The Plateau Supject of Xin Xiang Medical University ([2015]114)
Wang Shouyu,Wang Xiaochun,Huo Xiaoqing et al. The six-year operation faults statistics analysis and prediction of Philips Brilliance big bore CT[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 1000-1002.
Wang Shouyu,Wang Xiaochun,Huo Xiaoqing et al. The six-year operation faults statistics analysis and prediction of Philips Brilliance big bore CT[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 1000-1002.
[1] Meyer J. Applications of CT to radiotherapy treatment planning[J]. J Comput Assist Tomogr, 1980, 4(5):713. DOI:10.1097/00004728-198010000-00159.
[2] Nagata Y, Nishidai T, Abe M. CT simulator:a new 3-D planning and simulating system for radiotherapy:Part 2. Clinical application[J]. Int J Radiati Oncol Biol Phys, 1990, 18(3):505-513. DOI:10.1016/0360-3016(90)90053-M.
[3] Lapointe A, Lalonde A, Bahig H. Robust quantitative contrast-enhanced dual-energy CT for radiotherapy applications[J]. Med Phys, 2018, 45(7):3086-3096. DOI:10.1002/mp.12934.
[4] Yao L, Zhang L, Li XS, et al. An easy model for prediction of human renal clear cell carcinoma:curve fitting for three kidney tumors observed for over 10 years[J]. Chin Med J, 2014, 127(4):782-783. DOI:10.3760/cma.j.issn.0366-6999.20132589.
[5] 陈渝,吴晓东,万久,等. 直线加速器554例器件故障统计分析[J].医疗设备信息,2004, 19(6):49-50. DOI:10.3969/j.issn.1674.1633.2004.06.028.
Chen Y, Wu XD, Wan J, et al. The fault statistics of 554 cases of linear accelerator[J]. Inf Med Equip, 2004, 19(6):49-50. DOI:10.3969/j.issn.1674.1633.2004.06.028.
[6] 刘俪玭,毕楠,王绿化. 放射基因组学与放疗不良反应预测的研究现状[J]. 中华放射肿瘤学杂志, 2017, 26(6):711-714. DOI:10.3760/cma.j.issn.1004-4221.2017.06.024.
Liu LP, Bi N, Wang LH. Current status of research on prediction of radiotherapy induced adverse reactions by radiation genomics[J]. Chin J Rdiat Oncol, 2017, 26(6):711-714. DOI:10.3760/cma.j.issn.1004-4221.2017.06.024.
[7] 路玉昆,巩贯忠,陈进琥,等. CT图像影像组学特征参数变化与放射性肺炎的相关性研究[J]. 中华放射肿瘤学杂志,2018, 27(7):643-648. DOI:10.3760/cma.j.issn.1004-4221.2018.07.004.
Lu YK, Gong GZ, Chen JH, et al. The study of correlation between radiation pneumonitis and the variation of CT-based radiomics features[J]. Chin J Radiati Oncol, 2018, 27(7):643-648. DOI:10.3760/cma.j.issn.1004-4221.2018.07.004.
[8] Vassilakis E, Besseris G. The use of SPC tools for a preliminary assessment of an aero engines′ maintenance process and prioritization of aero engines′ faults[J]. J Qual Maint Engin, 2010, 16(1):5-22. DOI:10.1108/13552511011030291.
[9] 全力,文海燕. 大型医疗设备机房的温度与湿度控制[J]. 中国CT和MRI杂志, 2014, 12(3):119-120. DOI:10.3969/j.issn.1672-5131.2014.03.35.
Quan L, Wen HY, Temperature and humidity control in machine room of large medical equipment[J]. Chin J CT MRI, 2014, 12(3):119-120. DOI:10.3969/j.issn.1672-5131.2014.03.35.
[10] 李贤富,罗玉军,谭榜宪,等. BJ-6B加速器维修保养回顾分析[J]. 中华放射肿瘤学杂志, 2010, 19(6):555-558. DOI:10.3760/cma.j.issn.1004-4221.2010.06.022.
Li XF, Luo YJ, Tan BX, et al. Retrospective analysis on the maintenance of BJ-6B accelerator[J]. Chin J Radiat Oncol, 2010, 19(6):555-558. DOI:10.3760/ cma.j.issn.1004-4221.2010.06.022.
[11] 谭庭强,李黎,黄仁炳.23EX直线加速器7年故障统计分析经验[J]. 中华放射肿瘤学杂志, 2016, 25(12):1341-1344. DOI:10.3760/cma.j.issn.1004-4221.2016.12.015.
Tan TQ, Li L, Huang RB. Experience in 7-year fault statistical analysis of 23EX linear accelerator[J]. Chin J Radiat Oncol, 2016, 25(12):1341-1344. DOI:10.3760/ cma.jis.1004-4221.2016.12.015.
[12] 邓永锦,肖振华,欧阳斌,等. 基于R语言BP神经网络瓦里安NovalisTx直线加速器MLC系统故障预测模型研究[J]. 中华放射肿瘤学杂志, 2018, 27(5):495-499. DOI:10.3760/ cma.j.issn.1004-4221.2018.05.012.
Deng YJ, Xiao ZH, Ouyang B, et al. Research on multi-leaf collimator fault prediction model of Varian Novalis Tx medical linear accelerator based on BP Neural Network realized by R language[J]. Chin J Radiat Oncol, 2018, 27(5):495-499. DOI:10.3760/cma.j.issn.1004-4221.2018.05.012.