AbstractObjective To investigate the regulatory mechanism of long-chain non-coding RNA (lncRNA) MEG3 on the sensitivity of lung cancer cell line H1299 to irradiation. Methods The expression of MEG3 and miR-21-5p in lung cancer cell line H1299 was detected by qRT-PCR. Overexpression control group (transfected with pcDNA3.1), MEG3 overexpression group (transfected with pcDNA3.1-MEG3), miR-NC inhibition group (transfected anti-miR-NC), miR-21-5p inhibition group (transfected with anti-miR-21-5p), MEG3 overexpression+miR-NC overexpression group (co-transfected with pcDNA3.1-MEG3 and miR-NC), MEG3 overexpression+miR-21-5p overexpression group (co-transfected with pcDNA3.1-MEG3 and miR-21-5p mimics) were all transfected into H1299 cells by liposome method treated with 4Gy irradiation. Cell survival fraction was detected by colony formation assay. Cell apoptosis was detected by flow cytometry. The binding of MEG3 to miR-21-5p in cells was assessed by dual luciferase reporter assay. Results Compared with normal lung epithelial cells, the expression of MEG3 was significantly decreased, whereas the expression of miR-21-5p was significantly increased in the radioresistant lung cancer cells H1299. Overexpression of MEG3 or inhibition of miR-21-5p could promote the apoptosis and enhance the radiosensitivity of H1299 cells. MEG3 could targetedly regulate the expression of miR-21-5p. Overexpression of miR-21-5p could reverse the enhanced radiosensitivity of MEG3 to H1299 cells. Conclusion LncRNA MEG3 can enhance the sensitivity of lung cancer cells H1299 to irradiation. The mechanism may be related to targeting miR-21-5p.
Corresponding Authors:
Wang Wenguang, Email:370862895@qq.com
Cite this article:
Xue Mingqiang,Liu Mingbo,Xu Guanghui et al. lncRNA MEG3 increases the radiosensitivity of lung cancer cells by regulating miR-21[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 986-990.
Xue Mingqiang,Liu Mingbo,Xu Guanghui et al. lncRNA MEG3 increases the radiosensitivity of lung cancer cells by regulating miR-21[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 986-990.
[1] Yeo CJ. Tumor suppressor genes:a short review[J]. Surgery, 1999, 125(4):363-366. DOI:10.1016/S0039-6060(99)70001-2. [2] Morris LG, Chan TA. Therapeutic targeting of tumor suppressor genes[J]. Cancer, 2015, 121(9):1357-1368. DOI:10.1002/cncr.29140. [3] Wang LH, Wu CF, Rajasekaran N, et al. Loss of tumor suppressor gene function in human cancer:an overview[J]. Cell Physiol Biochem, 2018, 51(6):2647-2693. DOI:10.1159/000495956. [4] Sorscher S. Palbociclib and tumor suppressor gene activation[J]. Exp Opin Pharmacother, 2016, 17(14):1975-1975. DOI:10.1080/14656566.2016.1222773. [5] Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer, 2011, 10(1):38-54. DOI:10.1186/1476-4598-10-38. [6] He Y, Luo Y, Liang B, et al. Potential applications of MEG3 in cancer diagnosis and prognosis[J]. Oncotarget, 2017, 8(42):73282-73295. DOI:10.18632/oncotarget.19931. [7] Cui X, Jing X, Long C, et al. Long noncoding RNA MEG3, a potential novel biomarker to predict the clinical outcome of cancer patients:a meta-analysis[J]. Oncotarget, 2017, 8(12):19049-19056. DOI:10.18632/oncotarget.14987. [8] Schuster GK, Bilinski P, Sado T, et al. The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA[J]. Develop Dynam, 1998, 212(2):214-228. DOI:10.1002/(SICI)1097-0177(199806)212:2<214::AID-AJA6>3.0. CO;2-K. [9] Danila DC, Zhang X, Zhou Y, et al. A human pituitary tumor-derived folliculostellate cell line[J]. J Clin End Met, 2000, 85(3):1180-1187. DOI:10.1210/jcem.85.3.6424. [10] He Y, Luo Y, Liang B, et al. Potential applications of MEG3 in cancer diagnosis and prognosis[J]. Oncotarget, 2017, 8(42):73282-73295. DOI:10.18632/oncotarget.19931. [11] Lu KH, Li W, Liu XH, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression[J]. BMC Cancer, 2013, 13(1):461-471. DOI:10.1186/1471-2407-13-461. [12] Xia Y, He Z, Liu B, et al. Downregulation of MEG3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/β-catenin signaling pathway[J]. Mol Med Rep, 2015, 12(3):4530-4537. DOI:10.3892/mmr.2015.3897. [13] Pei W, Dong C, Hongbing M, et al. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis[J]. OncoTarg Ther, 2017, 10(1):5137-5149. DOI:10.2147/OTT. S146423. [14] Yang L, Peiru Y, Tao Z, et al. LncRNA MEG3 enhances, 131-I sensitivity in thyroid carcinoma via sponging miR-182[J]. Biomed Pharmacother, 2018, 105(1):1232-1239. DOI:10.1016/j.biopha.2018.06.087. [15] Rupaimoole R, Slack FJ. MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3):203-222. DOI:10.1038/nrd.2016.246. [16] Zhang JG, Wang JJ, Zhao F, et al. MicroRNA-21(miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC)[J]. Clin Chim Acta, 2010, 411(11-12):846-852. DOI:10.1016/j.cca.2010.02.074. [17] Ma Y, Xia H, Liu Y, et al. Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt[J]. Biomed Res Int, 2014, 7(2):617868-617873. DOI:10.1155/2014/617868.