[an error occurred while processing this directive] | [an error occurred while processing this directive]
X-ray irradiation increases production of IL-8 in lung cancer cell line A549
Song Yinghui1, Wang Nila2, Hu Jinyue2, Chai Qin2, Yang Fanfan2, Wang Guihua2
1Department of Hepatobiliary Surgery, Hunan Provincial People′s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha 410005, China; 2Department of Oncology, Changsha Central Hospital, Changsha 410004, China
AbstractObjective To observe the effect of irradiation on the production of IL-8 in lung cancer cell line A549 and explore its possible mechanism. Methods A549 cells irradiated with different doses of X-rays were used to collect cell supernatant, cellular RNA and protein at different time points after irradiation. The expression level of IL-8 mRNA in A549 cells after irradiation was detected by RT-PCR, which was further validated by real-time quantitative PCR. The expression level of IL-8 in the cell supernatant was quantitatively measured by ELISA. The expression levels of cellular signaling pathway molecules in A549 cells after irradiation were detected byWestern Blot. The A549 cells were pretreated with p38 MAPK inhibitor, NF-κB inhibitor and ROS scavenger. The effect of these inhibitors on the expression of IL-8 in A549 cells induced by irradiation was evaluated by ELISA. Results Irradiation up-regulated the expression of IL-8 in A549 cells in a dose-and time-dependent manner. Irradiation activated the p38 MAPK and NF-κB signaling pathway in A549 cells. p38 MAPK and NF-κB inhibitors blocked the induction of IL-8 of A549 cells by irradiation. Inhibition of ROS failed to inhibit the induction of IL-8 of A549 cells by irradiation. Conclusion Irradiation can increase the production of IL-8 in lung cancer cells A549, possibly through the activation of p38 MAPK and NF-κB signaling pathways in a ROS-independent pattern.
Song Yinghui,Wang Nila,Hu Jinyue et al. X-ray irradiation increases production of IL-8 in lung cancer cell line A549[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 982-985.
Song Yinghui,Wang Nila,Hu Jinyue et al. X-ray irradiation increases production of IL-8 in lung cancer cell line A549[J]. Chinese Journal of Radiation Oncology, 2020, 29(11): 982-985.
[1] Jain V, Berman AT. Radiation pneumonitis:old problem, new tricks[J]. Cancers (Basel), 2018, 10(7):222. DOI:10.3390/cancers10070222. [2] Zhang XJ, Sun JG, Sun J, et al. Prediction of radiation pneumonitis in lung cancer patients:a systematic review[J]. J Cancer Res Clin Oncol, 2012, 138(12):2103-2016. DOI:10.1007/s00432-012-1284-1. [3] Pasi F, Facoetti A, Nano R. IL-8 and IL-6 bystander signalling in human glioblastoma cells exposed to gamma radiation[J]. Anticancer Res, 2010, 30(7):2769-2772. [4] Tang SC, Liao PY, Hung SJ, et al. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and Cox-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin[J]. J Dermatol Sci, 2017, 86(3):238-248. DOI:10.1016/j.jdermsci.2017.03.004. [5] Wang S, Campbell J, Stenmark MH, et al. A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer[J]. Radiother Oncol, 2018, 126(3):506-510. DOI:10.1016/j.radonc.2017.12.026. [6] Werner E, Wang H, Doetsch PW. Opposite roles for p38 MAPK/MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability[J]. PLoS One, 2014, 9(10):e108234. DOI:10.1371/journal.pone.0108234. [7] Bledsoe TJ, Nath SK, Decker RH. Radiation pneumonitis[J]. Clin Chest Med, 2017, 38(2):201-208. DOI:10.1016/j.ccm.2016.12.004. [8] Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils[J]. J Clin Invest, 1989, 84(4):1045-1049. DOI:10.1172/JCI114265. [9] Rube CE, Uthe D, Wilfert F, et al. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation[J]. Int J Radiat Oncol Biol Phys, 2005, 61(5):1482-1492. DOI:10.1016/j.ijrobp.2004.12.072. [10] Rube CE, Palm J, Erren M, et al. Cytokine plasma levels:reliable predictors for radiation pneumonitis?[J]. PLoS One, 2008, 3(8):e2898. DOI:10.1371/journal.pone.0002898. [11] Lafargue A, Degorre C, Corre I, et al. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex Ⅱ dysfunction and superoxide generation[J]. Free Radic Biol Med, 2017, 108:750-759. DOI:10.1016/j.freeradbiomed.2017.04.019. [12] Abengózar-Vela A, Calonge M, Stern ME, et al. Quercetin and resveratrol decrease the inflammatory and oxidative responses in human ocular surface epithelial cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(4):2709-2719. DOI:10.1167/iovs.15-16595. [13] 宋颖辉,王桂华,柴琴,等. ALDH1A1抑制剂增加肺癌细胞A549的放射敏感性[J]. 中华放射肿瘤学杂志, 2017, 26(11):1336-1337. DOI:10.3760/cma.j.issn.1004-4221.2017.11.020. Song YH, Wang GH, Chai Q, et al. ALDH1A1 inhibitor increases radiosensitivity of lung cancer cell line A549[J]. Chin J Radiat Oncol, 2017, 26(11):1336-1337. DOI:10.3760/cma.j.issn.1004-4221.2017.11.020. [14] Ohsaki A, Tanuma SI, Tsukimoto M. TRPV4 channel-regulated ATP release contributes to γ-irradiation-induced production of IL-6 and IL-8 in epidermal keratinocytes[J]. Biol Pharm Bull, 2018, 41(10):1620-1626. DOI:10.1248/bpb.b18-00361. [15] Galván-Morales MÁ, Cabello-Gutiérrez C, Mejía-Nepomuceno F. Parainfluenza virus type 1 induces epithelial IL-8 production via p38 MAPK-MAPK signalling[J]. J Immunol Res, 2014, 2014:515984. DOI:10.1155/2014/515984. [16] Kim JY, An YM, Yoo BR, et al. HSP27 inhibitor attenuates radiation-induced pulmonary inflammation[J]. Sci Rep, 2018, 8(1):4189. DOI:10.1038/s41598-018-22635-9. [17] Skov L, Beurskens FJ, Zachariae CO, et al. IL-8 as antibody therapeutic target in inflammatory diseases:reduction of clinical activity in palmoplantar pustulosis[J]. J Immunol, 2008, 181(1):669-679. DOI:10.4049/jimmunol.181.1.669.