[an error occurred while processing this directive] | [an error occurred while processing this directive]
Dosimetric study of particle radiotherapy for glioma patients
Lu Yan1,3, Wang Weiwei1,3, Xing Ying1,3, Gao Jing2,3, Kong Lin2,3, Lu Jiade2,3
1Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China; 2Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China; 3Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321, China
AbstractObjective To investigate the dosimetric difference between glioma patients treated by particle (proton+carbon ion) and photon radiotherapy. Methods Twelve previously-treated glioma patients were selected, and given with the same total dose of 60.00 Gy [RBE]. Two types of planning target volumes (PTVs) including PTV-ion and PTV-photon were expended from clinical target volumes according to range uncertainty and patient setup errors. Based on PTV-ion, proton plans with sequential carbon ion boost (particle plan) were created. Following the same prescription, two types of photon intensity-modulated radiotherapy (IMRT) plans were established to achieve similar target coverage and compare the dose of organs at risk. Results Target coverages of three types of plans had no statistical difference (all P>0.05). The median integral dose of normal brain of all patients receiving particle plan was merely 44.90% of the minimum number from photon plans (P<0.001). Compared with the minimum number from photon plans, particle radiotherapy decreased the mean dose of brain stem[(6.83±6.22) Gy[RBE] vs. (15.10±10.11) Gy[RBE], P=0.001)], the maximum dose of chiasm[(47.76±20.80) Gy[RBE] vs. (49.59±20.52) Gy[RBE], P=0.009)] and the mean dose of contralateral hippocampus (0.26±9.08) Gy[RBE] vs. (16.28±11.14) Gy[RBE], P=0.002), respectively. Conclusions Particle radiotherapy can achieve similar target coverage while maintaining lower normal tissue doses to the photon radiotherapy. Photon planion can increase the doses to adjuvant normal tissues.
Fund:Join Breakthrough Project for New Frontier Technologies of the Shanghai Hospital Development Center (SHDC12016120)
Corresponding Authors:
Wang Weiwei, Email:weiwei.wang@sphic.org.cn
Cite this article:
Lu Yan,Wang Weiwei,Xing Ying et al. Dosimetric study of particle radiotherapy for glioma patients[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 866-871.
Lu Yan,Wang Weiwei,Xing Ying et al. Dosimetric study of particle radiotherapy for glioma patients[J]. Chinese Journal of Radiation Oncology, 2020, 29(10): 866-871.
[1] Matsuda M, Yamamoto T, Ishikawa E, et al. Prognostic factors in glioblastoma multiforme patients receiving high-dose particle radiotherapy or conventional radiotherapy[J]. Br J Radiol, 2011, 84(Spec Iss 1):S54-60. DOI:10.1259/bjr/29022270.
[2] Lorentini S, Amelio D, Giri MG, et al. IMRT or 3D-CRT in glioblastoma? A dosimetric criterion for patient selection[J]. Technol Cancer Res Treat, 2013, 12(5):411-420. DOI:10.7785/tcrt.2012.500341.
[3] Adeberg S, Bernhardt D, Ben Harrabi SB, et al. Sequential proton boost after standard chemoradiation for high-grade glioma[J]. Radiother Oncol, 2017, 125(2):266-272. DOI:10.1016/j.radonc.2017.09.040.
[4] Adeberg S, Harrabl SB, Bougatf N, et al, Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma[J]. Strahlenther Onkol, 2016, 192(11):770-779. DOI:10.1007/s00066-016-1007-7.
[5] Harrabi SB, Bougatf N, Mohr A, et al. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma[J]. Strahlenther Onkol, 2016, 192(11):759-769. DOI:10.1007/s00066-016-1005-9.
[6] Ando K, Kase Y. Biological characteristics of carbon-ion therapy[J]. Int J Radiat Biol, 2009, 85(9):715-728. DOI:10.1080/09553000903072470.
[7] Mohamad O, Sishc BJ, Saha J, et al. Carbon ion radiotherapy:a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair[J]. Cancers, 2017, 66(9):66. DOI:10.3390/cancers9060066.
[8] Adeberg S, Harrabi SB, Verma V, et al. Treatment of meningioma and glioma with protons and carbon ions[J]. Radiat Oncol, 2017, 12(1):193. DOI:10.1186/s13014-017-0924-7.
[9] Mizoe JE, Tsujii H, Hasegawa A, et al. Phase Ⅰ/Ⅱ clinical trial of carbon ion radiotherapy for malignant gliomas:combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2007, 69(2):390-396. DOI:10.1016/j.ijrobp.2007.03.003.
[10] Combs SE, Meinhard K, Rieken S, et al. Randomized phase Ⅱ study evaluating a carbon ion boost applied after combined radiochemotherapy with temozolomide versus a proton boost after radiochemotherapy with temozolomide in patients with primary glioblastoma:the CLEOPATRA Trial[J]. BMC Cancer, 2010, 10:478. DOI:10.1186/1471-2407-10-478.
[11] Ashour MG, Shouman TH, Hassouna AH, et al. Measuring radiotherapy setup errors in IMRT treated head and neck cancer patients requiring bilateral neck irradiation, NCI-egypt experience[J]. J Cancer Ther, 2017, 8(13):1160-1168. DOI:10.4236/jct.2017.813099.
[12] National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines) central nervous system cancers version 1.2016[DB/OL][2015-10-15]. https://www.nccn.org/disclosures/transparency. Aspx.
[13] Radiation Therapy Oncology Group. RTOG 0225:a phase Ⅱ study of intensity modulated radiation therapy (IMRT)+/-chemotherapy for nasopharyngeal cancer[DB/OL][2010-12-10]. http://www.rtog.org/clinical trials/protocoltable/0225.
[14] Schneider U, Pedroni E, Lomax A. The calibration of CT hounsfield units for radiotherapy treatment planning[J]. Phys Med Biol, 1996, 41(1):111-124. DOI:10.1088/0031-9155/41/1/009.
[15] Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations[J]. Phys Med Biol, 2012, 57(11):99-117. DOI:10.1088/0031-9155/57/11/r99.
[16] Scholz M, Kellerer AM, Kraft-Weyrather W, et al. Computation of cell survival in heavy ion beams for therapy[J]. Radiat Environ Biophys, 1997, 36(1):59-66. DOI:10.1007/s004110050055.
[17] Haberer T, Becher W, Schardt D, et al. Magnetic scanning system for heavy ion therapy[J]. Nucl Instru Meth Phys Res, 1993, 330(1-2):296-305. DOI:10.1016/0168-9002(93)91335-k.
[18] Lomax A. Intensity modulation methods for proton radiotherapy[J]. Phys Med Biol, 1999, 44(1):185-205. DOI:10.1111/j.0066-4812.2006.00588.x.
[19] Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness [RBE] values for proton beam therapy[J]. Int J Radiat Oncol Biol Phys, 2002, 53(2):407-421. DOI:10.1016/S0360-3016(02)02754-2.
[20] Khodayari B, Michaud AL, Stanic S, et al. Evaluation of hippocampus dose for patients undergoing intensity-modulated radiotherapy for nasopharyngeal carcinoma[J]. Br J Radiol, 2014, 87(1037):20130474-20130474. DOI:10.1259/bjr.20130474.
[21] Gondi V, Hermann BP, Mehta, MP, et al. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors[J]. Int J Radiat Oncol Biol Phys, 2013, 85(2):348-354. DOI:10.1016/j.ijrobp.2012.11.031.
[22] Han G, Liu D, Gan H, et al. Evaluation of the dosimetric feasibility of hippocampal sparing intensity-modulated radiotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. PLoS One, 2014, 9(2):e90007. DOI:10.1371/journal.pone.0090007.