[an error occurred while processing this directive] | [an error occurred while processing this directive]
Research progress on the role of microorganisms in radiation-induced oral mucositis
Shu Zekai1, Lai Shuzhen2, Chen Yuanyuan3, Chen Ming3
1 Department of Oncology, Second Clinical Medical College, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China; 2 Department of Radiotherapy, Shaoguan Yuebei Hospital of Guangdong Province, Shaoguan 512025, China; 3 Department of Radiation Oncology, Zhejiang Tumor Hospital, Hangzhou 310022, China
Abstract Radiation-induced oral mucositis (ROM) is one of the most common adverse events after radiotherapy for head and neck cancer, which may result in oral pain, dysphagia, poor nutrition or even radiotherapy interruption. Recently, increasing attention has been paid to the role of microorganisms in ROM. In this review, the pathogenesis and clinical manifestations of ROM, the role of microorganism in ROM and its mechanism and probiotic therapy were summarized.
Shu Zekai,Lai Shuzhen,Chen Yuanyuan et al. Research progress on the role of microorganisms in radiation-induced oral mucositis[J]. Chinese Journal of Radiation Oncology, 2020, 29(8): 695-698.
Shu Zekai,Lai Shuzhen,Chen Yuanyuan et al. Research progress on the role of microorganisms in radiation-induced oral mucositis[J]. Chinese Journal of Radiation Oncology, 2020, 29(8): 695-698.
[1] Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy[J]. Cancer, 2014, 120(10):1453-1461. DOI:10.1002/cncr.28592.
[2] Trotti A, Bellm LA, Epstein JB, et al. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy:a systematic literature review[J]. Radiother Oncol, 2003, 66(3):253-262. DOI:10.1016/s0167-8140(02)00404-8.
[3] Elting LS, Cooksley CD, Chambers MS, et al. Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies[J]. Int J Radia Oncol Biol Phys, 2007, 68(4):1110-1120. DOI:10.1016/j.ijrobp.2007.01.053.
[4] Mallick S, Benson R, Rath GK. Radiation induced oral mucositis:a review of current literature on prevention and management[J]. Eur Arch Otorhinolaryngol, 2016, 273(9):2285-2293. DOI:10.1007/s00405-015-3694-6.
[5] Peterson DE, Boers-Doets CB, Bensadoun RJ, et al. Management of oral and gastrointestinal mucosal injury:ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up[J]. Ann Oncol, 2015, 26(suppl 5):v139-v151. DOI:10.1093/annonc/mdv202.
[6] Busetto M, Fusco V, Corbella F, et al. Predictive factors for oropharyngeal mycosis during radiochemotherapy for head and neck carcinoma and consequences on treatment duration. Results of mycosis in radiotherapy (MIR):a prospective longitudinal study[J]. Radiother Oncol, 2013, 109(2):303-310. DOI:10.1016/j.radonc.2013.05.040.
[7] Vasconcelos RM, Sanfilippo N, Paster BJ, et al. Host-microbiome cross-talk in oral mucositis[J]. J Dent Res, 2016, 95(7):725-733. DOI:10.1177/0022034516641890.
[8] Sonis ST, Elting LS, Keefe D, et al. Perspectives on cancer therapy-induced mucosal injury:pathogenesis, measurement, epidemiology, and consequences for patients[J]. Cancer, 2004, 100(9 Suppl):1995-2025. DOI:10.1002/cncr.20162.
[9] Sonis ST. The pathobiology of mucositis[J]. Nat Rev Cancer, 2004, 4(4):277-284. DOI:10.1038/nrc1318.
[10] Sonis ST. The Chicken or the Egg? Changes in Oral Microbiota as Cause or Consequence of Mucositis During Radiation Therapy[J]. EBioMedicine, 2017, 18:7-8. DOI:10.1016/j.ebiom.2017.03.017.
[11] Trotti A, Garden A, Warde P, et al. A multinational, randomized phase Ⅲ trial of iseganan hcl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3):674-681. DOI:10.1016/S0360-3016(03)01627-4.
[12] Stokman MA, Spijkervet FKL, Burlage FR, et al. Oral mucositis and selective elimination of oral flora in head and neck cancer patients receiving radiotherapy:a double-blind randomised clinical trial[J]. Br J Cancer, 2003, 88(7):1012-1016. DOI:10.1038/sj.bjc.6600824.
[13] Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960):1694-1697. DOI:10.1126/science.1177486.
[14] Redding SW, Zellars RC, Kirkpatrick WR, et al. Epidemiology of oropharyngeal candida colonization and infection in patients receiving radiation for head and neck cancer[J]. J Clin Microbiol, 1999, 37(12):3896-3900.
[15] Bulacio L, Paz M, Ramadan S, et al. Oral infections caused by yeasts in patients with head and neck cancer undergoing radiotherapy. Identification of the yeasts and evaluation of their antifungal susceptibility[J]. J Mycol Med, 2012, 22(4):348-353. DOI:10.1016/j.mycmed.2012.08.002.
[16] Dahiya MC, Redding SW, Dahiya RS, et al. Oropharyngeal candidiasis caused by non-albicans yeast in patients receiving external beam radiotherapy for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2003, 57(1):79-83. DOI:10.1016/s0360-3016(03)00415-2.
[17] Ramla S, Sharma V, Patel M. Influence of cancer treatment on the candida albicans isolated from the oral cavities of cancer patients[J]. Support Care Cancer, 2016, 24(6):2429-2436. DOI:10.1007/s00520-015-3035-8.
[18] de Freitas EM, Nobre SA, Pires MB, et al. Oral candida species in head and neck cancer patients treated by radiotherapy[J]. Auris Nasus Larynx, 2013, 40(4):400-404. DOI:10.1016/j.anl.2012.11.011.
[19] Karbach J, Walter C, Al-Nawas B. Evaluation of saliva flow rates, candida colonization and susceptibility of candida strains after head and neck radiation[J]. Clin Oral Investig, 2012, 16(4):1305-1312. DOI:10.1007/s00784-011-0612-1.
[20] Fotos PG, Hellstein JW. Candida and candidosis. Epidemiology, diagnosis and therapeutic management[J]. Dent Clin North Am, 1992, 36(4):857-878.
[21] Davies AN, Brailsford SR, Beighton D. Oral candidosis in patients with advanced cancer[J]. Oral Oncol, 2006, 42(7):698-702. DOI:10.1016/j.oraloncology.2005.11.010.
[22] Grotz KA, Genitsariotis S, Vehling D, et al. Long-term oral candida colonization, mucositis and salivary function after head and neck radiotherapy[J]. Support Care Cancer, 2003, 11(11):717-721. DOI:10.1007/s00520-003-0506-0.
[23] Almstahl A, Wikstrom M, Fagerberg-Mohlin B. Microflora in oral ecosystems in subjects with radiation-induced hyposalivation[J]. Oral Dis, 2008, 14(6):541-549. DOI:10.1111/j.1601-0825.2007.01416.x.
[24] Gaetti-Jardim E, Jardim ECG, Schweitzer CM, et al. Supragingival and subgingival microbiota from patients with poor oral hygiene submitted to radiotherapy for head and neck cancer treatment[J]. Arch Oral Biol, 2018, 90:45-52. DOI:10.1016/j.archoralbio.2018.01.003.
[25] Schuurhuis JM, Stokman MA, Witjes MJ, et al. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens[J]. Oral Oncol, 2016, 58:32-40. DOI:10.1016/j.oraloncology.2016.05.005.
[26] Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity[J]. J Clin Microbiol, 2005, 43(11):5721-5732. DOI:10.1128/JCM.43.11.5721-5732.2005.
[27] Siqueira JF Jr, Rocas IN. As-yet-uncultivated oral bacteria:breadth and association with oral and extra-oral diseases[J]. J Oral Microbiol, 2013, 5. DOI:10.3402/jom.v5i0.21077.
[28] Hu YJ, Wang Q, Jiang YT, et al. Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing[J]. Int J Oral Sci, 2013, 5(1):21-25. DOI:10.1038/ijos.2013.15.
[29] Hu YJ, Shao ZY, Wang Q, et al. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing[J]. PLoS One, 2013, 8(2):e56343. DOI:10.1371/journal.pone.0056343.
[30] Xu Y, Teng F, Huang S, et al. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy[J]. Arch Oral Biol, 2014, 59(2):176-186. DOI:10.1016/j.archoralbio.2013.10.011.
[31] Gao L, Hu Y, Wang Y, et al. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing[J]. Arch Oral Biol, 2015, 60(9):1222-1230. DOI:10.1016/j.archoralbio.2015.05.006.
[32] Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project[J]. Nature, 2007, 449(7164):804-810. DOI:10.1038/nature06244.
[33] Huse SM, Ye Y, Zhou Y, et al. A core human microbiome as viewed through 16S rRNA sequence clusters[J]. PLoS One, 2012, 7(6):e34242. DOI:10.1371/journal.pone.0034242.
[34] Zhu XX, Yang XJ, Chao YL, et al. The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma[J]. EBioMedicine, 2017, 18:23-31. DOI:10.1016/j.ebiom.2017.02.002.
[35] Hou J, Zheng H, Li P, et al. Distinct shifts in the oral microbiota are associated with the progression and aggravation of mucositis during radiotherapy[J]. Radiother Oncol, 2018, 129(1):44-51. DOI:10.1016/j.radonc.2018.04.023.
[36] Frenkel ES, Ribbeck K. Salivary mucins in host defense and disease prevention[J]. J Oral Microbiol, 2015, 7:29759. DOI:10.3402/jom.v7.29759.
[37] Amado F, Lobo MJC, Domingues P, et al. Salivary peptidomics[J]. Expert Rev Proteomics, 2014, 7(5):709-721. DOI:10.1586/epr.10.48.
[38] Frenkel ES, Ribbeck K. Salivary mucins protect surfaces from colonization by cariogenic bacteria[J]. Appl Environ Microbiol, 2015, 81(1):332-338. DOI:10.1128/AEM.02573-14.
[39] Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs:signal 0s that spur autophagy and immunity[J]. Immunol Rev, 2012, 249(1):158-175. DOI:10.1111/j.1600-065X.2012.01146.x.
[40] Sonis ST. New thoughts on the initiation of mucositis[J]. Oral Dis, 2010, 16(7):597-600. DOI:10.1111/j.1601-0825.2010.01681.x.
[41] Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer[J]. Neoplasia, 2009, 11(7):615-628. DOI:10.1593/neo.09284.
[42] Logan RM, Stringer AM, Bowen JM, et al. The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis:pathobiology, animal models and cytotoxic drugs[J]. Cancer Treat Rev, 2007, 33(5):448-460. DOI:10.1016/j.ctrv.2007.03.001.
[43] Xiao HW, Li Y, Luo D, et al. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88′s effects on the gut microbiota[J]. Exp Mol Med, 2018, 50(1):e433. DOI:10.1038/emm.2017.246.
[44] Martin R, Miquel S, Langella P, et al. The role of metagenomics in understanding the human microbiome in health and disease[J]. Virulence, 2014, 5(3):413-423. DOI:10.4161/viru.27864.
[45] Limaye SA, Haddad RI, Cilli F, et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy[J]. Cancer, 2013, 119(24):4268-4276. DOI:10.1002/cncr.28365.
[46] Sharma A, Rath GK, Chaudhary SP, et al. Lactobacillus brevis CD2 lozenges reduce radiation-and chemotherapy-induced mucositis in patients with head and neck cancer:a randomized double-blind placebo-controlled study[J]. Eur J Cancer, 2012, 48(6):875-881. DOI:10.1016/j.ejca.2011.06.010.
[47] Jiang C, Wang H, Xia C, et al. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma[J]. Cancer, 2019, 125(7):1081-1090, DOI:10.1002/cncr.31907.
[48] Riehl TE, Alvarado D, Ee X, et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells[J]. Gut, 2019, 68(6):1003-1013, DOI:10.1136/gutjnl-2018-316226.
[49] Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008, 320(5873):226-230. DOI:10.1126/science.1154986.