Abstract At present, in many preclinical and clinical studies, the mechanism of action, combination therapy, therapeutic efficacy, and side effects ofvascular endothelial growth factor(VEGF) inhibitors in combination with radiotherapy and immunotherapy are being explored. Some studies have reported improved tumor control after the addition of anti-VEGF intervention to radiotherapy. Nevertheless, how to administer these three modalities to achieve optimal response with minimal toxicity remains to be investigated. In this article, the mechanism and research progress on anti-VEGF therapy, radiotherapy and immunotherapy were reviewed.
Yu Qin,Yu Rong. Research progress on anti-vascular endothelial growth factor therapy, radiotherapy and immunotherapy for tumors[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 593-596.
Yu Qin,Yu Rong. Research progress on anti-vascular endothelial growth factor therapy, radiotherapy and immunotherapy for tumors[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 593-596.
[1] Folkman J, Sherwood LM, Parris EE. Tumor angiogenesis:therapeutic implications[J]. N Engl J Med, 1971, 285(21):1182-1186. [2] Hegde PS, Jubb AM, Chen D, et al. Predictive impact of circulating vascular endothelial growth factor in four phase Ⅲ trials evaluating bevacizumab[J]. Clin Cancer Res, 2013, 19(4):929-937. DOI:10.1158/1078-0432.ccr-12-2535. [3] Peach CJ, Miqnone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms:binding and signalling at VEGFR2[J]. Int J Mol Sci, 2018, 19(4):E1264. DOI:10.3390/ijms19041264. [4] Grabowski J, Glode A. Ramucirumab:A vascular endothelial growth factor receptor 2 inhibitor with activity in several malignancies[J]. Am J Health Syst Pharm, 2016, 73(13):957-968. DOI:10.2146/ajhp150188. [5] Vachhani P, George S. VEGF inhibitors in renal cell carcinoma[J]. Clin Adv Hematol Oncol, 2016, 14(12):1016-1028. [6] Itatani Y, Kawada K, Yamamoto T, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4):E1232. DOI:10.3390/ijms19041232. [7] Zhao L, Zhang D, Ma H, et al. High VEGF-A level at baseline predicts poor treatment effect of bevacizumab-based chemotherapy in metastatic colorectal cancer:a meta-analysis[J]. Panminerva Med, 2016, 58(1):48-58. [8] Miles DW, de Hass SL, Dirix LY, et al. Biomarker results from the AVADO phase 3 trial of first-line bevacizumab plus docetaxel for HER-2-negative metastatic breast cancer[J]. Br J Cancer, 2013, 108(5):1052-1060. DOI:10.1038/bjc.2013.69. [9] English WR, Lunt SJ, Fisher M, et al. Differential expression of VEGFA isoforms regulates metastasis and response to anti-VEGFA therapy in sarcoma[J]. Cancer Res, 2017, 77(10):2633-2646. DOI:10.1158/0008-5472.can-16-0255. [10] Miles D, Cameron D, Bondarenko I, et al. Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER-2-negative metastatic breast cancer (MERiDiAN):a double-blind placebo-controlled randomised phase Ⅲ trial with prospective biomarker evaluation[J]. Eur J Cancer, 2017, 70(1):146-155. DOI:10.1016/j.ejca.2016.09.024. [11] Bais C, Mueller B, Brady MF, et al. Tumor microvessel density as a potential predictive marker for Bevacizumab benefit:GOG-0218 biomarker analyses[J]. J Natl Cancer Inst, 2017, 109(11):djx066. DOI:10.1093/jnci/djx066. [12] Benson AB 3rd, Kiss I, Bridgewater J, et al. BATON-CRC:A phase Ⅱ randomized trial comparing tivozanib plus mFOLFOX6 with Bevacizumab plus mFOLFOX6 in stage Ⅳ metastatic colorectal cancer[J]. Clin Cancer Res, 2016, 22(20):5058-5067. DOI:10.1158/1078-0432. CCR-15-3117. [13] Zhou C, Clamp A, Backen A, et al. Systematic analysis of circulating soluble angiogenesis-associated proteins in ICON7 identifies Tie2 as a biomarker of vascular progression on bevacizumab[J]. Br J Cancer, 2016, 115(2):228-235. DOI:10.1038/bjc.2016.194. [14] Sonveaux P, Brouet A, Havaux X, et al. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway:implications for tumor radiotherapy[J]. Cancer Res, 2003, 63(5):1012-1019. [15] Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases[J]. Physiol Rev, 2011, 91(3):1071-1121. DOI:10.1152/physrev.00038.2010. [16] Dings RP, Loren M, Heun H, et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization[J]. Clin Cancer Res, 2007, 13(11):3395-3402. DOI:10.1158/1078-0432. CCR-06.2441. [17] Buckel L, Advani SJ, Frentzen A, et al. Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium[J]. Int J Cancer, 2013, 133(12):2989-2999. DOI:10.1002/ijc.28296. [18] Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J]. Cancer Res, 1999, 59(14):3374-3378. [19] Willett CG, Kozin SV, Duda DG, et al. Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer:theory and clinical practice[J]. Semin Oncol, 2006, 33(5 Suppl 10):S35-S40. DOI:10.1053/j.seminoncol.2006.08.007. [20] 胡科, 戈伟, 张彦彦, 等. Endostar联合放疗对A549细胞凋亡及HIF-1、VEGF表达的影响[J]. 武汉大学学报(医学版), 2010, 31(2):182-185. DOI:10.14188/j.1671-8852.2010.02.022. [21] Harada H, Inoue M, Itasaka S, et al. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels[J]. Nat Commun, 2012, 3:783. DOI:10.1038/ncomms1786. [22] Kleibeuker EA, Fokas E, Allen PD, et al. Low dose angiostatic treatment counteracts radiotherapy induced tumor perfusion and enhances the anti-tumor effect[J]. Oncotarget, 2016, 7(47):76613-76627. DOI:10.18632/oncotarget.12814. [23] Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis[J]. Oncogene, 2003, 22(37):5897-5906. DOI:10.1038/sj.onc.1206702. [24] Truman JP, Garcia-Barros M, Kaaq M, et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery[J]. PLoS One, 2010, 5(8):e12310. DOI:10.1371/journal.pone.0012310. [25] Wang F, Li H, Markovsky E, et al. Pazopanib radio-sensitization of human sarcoma tumors[J]. Oncotarget, 2018, 9(10):9311-9324. DOI:10.18632/oncotarget.24281. [26] Willett CG, Duda DG, di Tomaso E, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, adiation therapy, and fluorouracil in rectal cancer:a multidisciplinary phase Ⅱ study[J]. J Clin Oncol, 2009, 27(18):3020-3026. DOI:10.1200/JCO.2008.21.1771. [27] Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma[J]. N Engl J Med, 2014, 370(8):709-722. DOI:10.1056/nejmoa1308345. [28] Gilbert MR, Diqnam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma[J]. N Engl J Med, 2014, 370(8):699-708. DOI:10.1056/nejmoa1308573. [29] Boisen MK, Holst CB, Consalvo N, et al. Plasma YKL-40 as a biomarker for bevacizumab efficacy in patients with newly diagnosed glioblastoma in the phase 3 randomized AVAglio trial[J]. Oncotarget, 2018, 9(6):6752-6762. DOI:10.18632/oncotarget.22886. [30] 周琦超, 包勇, 彭芳, 等. 不可手术切除Ⅲ期非小细胞肺癌恩度联合同期放化疗多中心Ⅰ+Ⅱ期临床试验[J]. 中华放射肿瘤学杂志, 2012, 21(6):500-503. DOI:10.3760/crna.j.issn.1004-4221.2012.06.005. Zhou QC, Bao Y, Peng F, et al. A multicenter phase I+ Ⅱ clinical trial of endu combined with concurrent radiotherapy and chemotherapy for stage Ⅲ non-small cell lung cancer[J]. Chin J Radiat Oncol, 2012, 21(6):500-503. DOI:10.3760/crna.j.issn.1004-4221.2012.06.005. [31] Chen DS, Mellman I. Oncology meets immunology:the cancer-immunity cycle[J]. Immunity, 2013, 39(1):1-10. DOI:10.1016/j.immuni.2013.07.012. [32] Dirkx AE, Oude Eqbrink MG, Kuijpers MJ, et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelialadhesion molecule expression[J]. Cancer Res, 2003, 63(9):2322-2329. DOI:10.1097/00130404-200305000-00010. [33] Lanitis E, Irving M, Coukos G, et al. Targeting the tumor vasculature to enhance T cell activity[J]. Curr Opin Immunol, 2015, 33(1):55-63. DOI:10.1016/j.coi.2015.01.011. [34] Peske JD, Woods AB, Enqelhard VH, et al. Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment[J]. Adv Cancer Res, 2015, 128(2):263-307. DOI:10.1016/bs.acr.2015.05.001. [35] Hamzah J, Juqold M, Kiessling F, et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction[J]. Nature, 2008, 453(7193):410-414. DOI:10.1038/nature06868. [36] Huang Y, Yuan J, Righi E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci USA, 2012, 109(43):17561-17566. DOI:10.1073/pnas.1215397109. [37] Yasuda S, Sho M, Yamato I, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2(VEGFR2) induces synergistic antitumour effect in vivo[J]. Clin Exp Immunol, 2013, 172(3):500-506. DOI:10.1111/cei.12069. [38] Yuan J, Zhou J, Dong Z, et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab[J]. Cancer Immunol Res, 2014, 2(2):127-132. DOI:10.1158/2326-6066.cir-13-0163. [39] Alfaro C, Suarez N, Gonzalez A, et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes[J]. Br J Cancer, 2009, 100(7):1111-1119. DOI:10.1038/sj.bjc.6604965. [40] Terme M, Pernot S, Marcheteau E, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer[J]. Cancer Res, 2013, 73(2):539-549. DOI:10.1158/0008-5472.can-12-2325. [41] Guislain A, Gadiot J, Kaiser A, et al. Sunitinib pretreatment improves tumor infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma[J]. Cancer Immunol Immunother, 2015, 64(10):1241-1250. DOI:10.1007/s00262-015-1735-z. [42] Osada T, Chong G, Tansik R, et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients[J]. Cancer Immunol, Immunother, 2008, 57(8):1115-1124. DOI:10.1007/s00262-007-0441-x. [43] Hodi FS, Lawrence D, Lezcano C, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma[J]. Cancer Immunol Res, 2014, 2(7):632-642. DOI:10.1158/2326-6066.cir-14-0053. [44] Wang C, Lin GH, McPherson AJ, et al. Immune regulation by 4-1BB and 4-1BBL:complexities and challenges[J]. Immunol Rev, 2009, 229(1):192-215. DOI:10.1111/j.1600-065x2009.00765.x. [45] Dubrot J, Milheiro F, Alfaro C, et al. Treatment with anti137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ[J]. Cancer Immunol Immunother, 2010, 59(8):1223-1233. DOI:10.1007/s00262-010-0846-9. [46] Schrand B, Verma B, Levay A, et al. Radiation-induced enhancement of antitumor T cell immunity by VEGF-targeted 4-1BB costimulation[J]. Cancer Res, 2017, 77(6):1310-1321. DOI:10.1158/0008-5472.can-16-2105. [47] Hughes PE, Caenepeel S, Wu LC. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer[J]. Trends Immunol, 2016, 37(7):462-476. DOI:10.1016/j.it.2016.04.010. [48] Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy[J]. Cancer Discov, 2016, 6(2):202-216. DOI:10.1158/2159-8290.cd-15-0283.