[an error occurred while processing this directive] | [an error occurred while processing this directive]
Application of TG100 report in process quality control of intensity-modulated radiotherapy
Song Rui1, Zhang Jun2, Shen Jiuling2, Liu Zhiyong1, Gao Xuefen1, Ni Gang1, Chen Jing1
1Department of Radiation Oncology, First People's Hospital of Tianmen City, Tianmen 431700, China; 2Department of Radiation Chemotherapy, Zhongnan Hospital, Wuhan University, Wuhan 430072, China
AbstractObjective To analyze the intensity-modulated radiotherapy (IMRT) process based on the TG100 report, aiming to improve the quality control method and guarantee the safety and quality of IMRT. Methods Based on the TG100 report, a risk analysis team was established. The flow chart of overall and each sub-step of IMRT was constructed. The failure mode and effect analysis method were adopted to determine all potential error modes in the process. The probability of of the error mode, the probability of being checked out and the severity of the effect of the error mode on the clinical bed were evaluated based on the pre-set scoring standard. The priority value of each error mode was calculated and ranked from high to low priority value. The top 20% is defined as the high-risk error mode, which was analyzed by error tree to improve the quality control method. Results IMRT consisted of 11 main steps and 41 sub-steps, and 180 failure modes were detected. The priority values were ranged from 30 to 178. A total of 36 high-risk failure modes were found. The top 5 high-risk failure modes (RPN) consisted of setup error (178), electronic portal imaging device (EPID) registration (172), contouring error (166), treatment delivery error (160) and prescription dose error (156). Conclusion TG100 report is practical and convenient to utilize, which can effectively and systematically improve IMRT process and provide safety and quality assurance of IMRT process.
Song Rui,Zhang Jun,Shen Jiuling et al. Application of TG100 report in process quality control of intensity-modulated radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 554-557.
Song Rui,Zhang Jun,Shen Jiuling et al. Application of TG100 report in process quality control of intensity-modulated radiotherapy[J]. Chinese Journal of Radiation Oncology, 2020, 29(7): 554-557.
[1] Otto K. Volumetric modulated arc therapy:IMRT in a single gantry arc[J]. Med Phys, 2008, 35(1):310-317. DOI:10.1118/1.2818738. [2] Bucci MK, Bevan A, Roach MR. Advances in radiation therapy:conventional to 3D, to IMRT, to 4D, and beyond[J]. CA Cancer J Clin, 2005, 55(2):117-134. DOI:10.3322/canjclin.55.2.117. [3] Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation[J]. Int J Radiat Oncol Biol Phys, 2001, 51(1):261-266. DOI:10.1016/s0360-3016(01)01664-9. [4] Mu G, Ludlum E, Xia P. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer[J]. Phys Med Biol, 2008, 53(1):77-88. DOI:10.1088/0031-9155/53/1/005. [5] Combs SE, Konkel S, Schulz-Ertner D, et al. Intensity modulated radiotherapy (IMRT) in patients with carcinomas of the paranasal sinuses:clinical benefit for complex shaped target volumes[J]. Radiat Oncol, 2006, 1(1):23. DOI:10.1186/1748-717X-1-23. [6] Huang G, Medlam G, Lee J, et al. Error in the delivery of radiation therapy:results of a quality assurance review[J]. Int J Radiat Oncol Biol Phys, 2005, 61(5):1590-1595. DOI:10.1016/j.ijrobp.2004.10.017. [7] Williamson JF, Dunscombe PB, Sharpe MB, et al. Quality assurance needs for modern image-based radiotherapy:recommendations from 2007 interorganizational symposium on"quality assurance of radiation therapy:challenges of advanced technology"[J]. Int J Radiat Oncol Biol Phys, 2008, 71(1 Suppl):S2-S12. DOI:10.1016/j.ijrobp.2007.08.080. [8] 沈九零, 李光俊, 柏森. 失败模式和效应分析在放疗流程QC中应用进展[J]. 中华放射肿瘤学杂志, 2017, 26(11):1354-1358. DOI:10.3760/cma.j.issn.1004-4221.2017.11.025. Shen JL, Li GJ, Bai S. Progress in application of failure mode and effect analysis in the quality control of radiotherapy process[J]. Chin J Radiat Oncol. 2017, 26(11):1354-1358. DOI:10.3760/cma.j.issn.1004-4221.2017.11.025. [9] 谢耩, 胡伟刚, 范嘉伟, 等. 放疗全流程管理及QA的初步应用经验[J]. 中华放射肿瘤学杂志, 2017, 26(3):342-346. DOI:10.3760/cma.j.issn.1004-4221.2017.03.020. Xie J, Hu WG, Fan JW, et al. The primary experience of an entire QA workflow management in radiotherapy[J]. Chin J Radiat Oncol, 2017, 26(3):342-346. DOI:10.3760/cma.j.issn.1004-4221.2017.03.020. [10] 赵胜光, 沈文同, 张毅斌,等. 失效模式和效果分析用于术中放疗风险管理模式初探[J]. 中华放射肿瘤学杂志, 2013, 22(2):147-150. DOI:10.3760/cma.j.issn.1004-4221.2013.02.017. Zhao SG, Shen WT, Zhang YB, et al. Failure modes and effects analysis applied to the risk management of intraoperative radiotherapy[J]. Chin J Radiat Oncol. 2013, 22(2):147-150. DOI:10.3760/cma.j.issn.1004-4221.2013.02.017. [11] Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM:application of risk analysis methods to radiation therapy quality management[J]. Med Phys, 2016, 43(7):4209. DOI:10.1118/1.4947547. [12] Ford EC, Smith K, Terezakis S, et al. A streamlined failure mode and effects analysis[J]. Med Phys, 2014, 41(6):61709. DOI:10.1118/1.4875687. [13] Manger RP, Paxton AB, Pawlicki T, et al. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery[J]. Med Phys, 2015, 42(5):2449-2461. DOI:10.1118/1.4918319. [14] Younge KC, Wang Y, Thompson J, et al. Practical implementation of failure mode and effects analysis for safety and efficiency in stereotactic radiosurgery[J]. Int J Radiat Oncol Biol Phys, 2015, 91(5):1003-1008. DOI:10.1016/j.ijrobp.2014.12.033. [15] Masini L, Donis L, Loi G, et al. Application of failure mode and effects analysis to intracranial stereotactic radiation surgery by linear accelerator[J]. Pract Radiat Oncol, 2014, 4(6):392-397. DOI:10.1016/j.prro.2014.01.006. [16] Ford EC, Gaudette R, Myers L, et al. Evaluation of safety in a radiation oncology setting using failure mode and effects analysis[J]. Int J Radiat Oncol Biol Phys, 2009, 74(3):852-858. DOI:10.1016/j.ijrobp.2008.10.038. [17] Broggi S, Cantone MC, Chiara A, et al. Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy[J]. J Appl Clin Med Phys, 2013, 14(5):265-277. DOI:10.1120/jacmp.v14i5.4329. [18] 高宏, 赵云. 体重减轻对食管癌放疗摆位精度的影响[J]. 现代肿瘤医学, 2015(15):2193-2194. DOI:10.3969/j.issn.1672-4992.2015.15.35. Gao H, Zhao Y. The effect of weight loss on the positioning accuracy of esophageal cancer radiotherapy[J]. J Mod oncol, 2015(15):2193-2194. DOI:10.3969/j.issn.1672-4992.2015.15.35. [19] Teixeira FC, de Almeida CE, Saiful HM. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil[J]. Med Phys, 2016, 43(1):171. DOI:10.1118/1.4938065. [20] Zheng Y, Johnson R, Larson G. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis[J]. Med Phys, 2016, 43(6):2904-2910. DOI:10.1118/1.4948686. [21] Sayler E, Eldredge-Hindy H, Dinome J, et al. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators[J]. Brachytherapy, 2015, 14(2):293-299. DOI:10.1016/j.brachy.2014.11.007.