Abstract The integration of MRI and linac has realized real-time MRI-guided radiotherapy and accelerated the progress of precision radiotherapy. Electrons are subjected to Lorentz force in the magnetic field, especially the electron cyclotron effect occurs at the tissue-air interface, which changes the original electron equilibrium state and brings challenges to dosimetry with MRI-Linac. In recent years, a series of studies carried out through Monte Carlo simulation and experimental measurement have suggested that the conventional dosimetry devices can be used for the dosimetry with MRI-Linac after replacing the magnetic materials, but corresponding correction factors should be introduced according to the magnetic field intensity, placement angle of the measuring device, type of the measuring device. The standardization, streamlining, and real-time dosimetry with MRI-Linac need to be further studied.
Fund:Fund programs:Three-year Action Plan to Promote Clinical Skills and Clinical Innovation Ability in Municipal Hospitals at Development Center of Shanghai Shenkang Hospital (16CR3112B);Shanghai Health and Family Planning Commission Youth Project on Scientific Research Projects (20184Y0229)
Corresponding Authors:
Fu Jie, Email:fujie74@sjtu.edu.cn
Cite this article:
Fu Jiaqi,Ni Cheng,Fu Jie. Research progress in dosimetry with MRI-Linac[J]. Chinese Journal of Radiation Oncology, 2020, 29(5): 396-400.
Fu Jiaqi,Ni Cheng,Fu Jie. Research progress in dosimetry with MRI-Linac[J]. Chinese Journal of Radiation Oncology, 2020, 29(5): 396-400.
[1] 黄伟, Allen LX, 李宝生. MRI引导的自适应放疗技术进展[J]. 中华放射肿瘤学杂志, 2017, 26(7):819-822. DOI:10.3969/j.issn.1006-5741.2016.05.021.
Huang W, Allen LX, Li BS. Advances in magnetic resonance imaging-guided adaptive radiotherapy[J]. Chin J Radiat Oncol, 2017, 26(07):819-822. DOI:10.3969/j.issn.1006-5741.2016.05.021.
[2] Almond PR, Biggs P, Coursey BM, et al. AAPM′s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams[J]. Med Phys, 1999, 26(9). DOI:10.1118/1.598691.
[3] Mcewen M, Dewerd L, Ibbott G, et al. Addendum to the AAPM′s TG-51 protocol for clinical reference dosimetry of high-energy photon beams[J]. Medical Physics, 2014, 41(4):041501. DOI:10.1118/1.4866223.
[4] Musolino SV. Absorbed dose determination in external beam radiotherapy:an international code of practice for dosimetry based on standards of absorbed dose to water;technical reports series No.398[J]. Heal Phys, 2001, 81(5):592-593. DOI:10.1097/00004032-200111000-00017.
[5] Meijsing I, Raaymakers BW, Raaijmakers AJE, et al. Dosimetry for the MRI accelerator:the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber[J]. Phys Med Biol, 2009, 54(10):2993-3002. DOI:10.1088/0031-9155/54/10/002.
[6] Smit K, Van Asselen B, Kok JGM, et al. Towards reference dosimetry for the MR-linac:magnetic field correction of the ionization chamber reading[J]. Phys Med Biol, 2013, 58(17):5945-5957. DOI:10.1088/0031-9155/58/17/5945.
[7] Brand N, Pojtinger S, Tsitsekidis S, et al. Experimental analysis of correction factors for reference dosimetry in a magnetic field[J]. Curr Direct Biomed Engineer, 2017, 3(2):803-805. DOI:10.1515/cdbme-2017-0170.
[8] Pojtinger S, Dohm OS, Kapsch RP, et al. Ionization chamber correction factors for MR-linacs[J]. Phys Med Biol, 2018, 63(11):11NT03. DOI:10.1088/1361-6560/aac4f2.
[9] Malkov VN, Rogers DWO. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality[J]. Med Phys, 2018, 45(2):908-925. DOI:10.1002/mp.12716.
[10] O′Brien DJ, Roberts DA, Ibbott GS, et al. Reference dosimetry in magnetic fields:formalism and ionization chamber correction factors[J]. Med Phys, 2016, 43(8):4915-4927. DOI:10.1118/1.4959785.
[11] Agnew J, O′Grady F, Young R, et al. Quantification of static magnetic field effects on radiotherapy ionization chambers[J]. Phys Med Biol, 2017, 62(5):1731-1743. DOI:10.1088/1361-6560/aa5876.
[12] Reynolds M, Fallone BG, Rathee S. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields[J]. Med Phys, 2013, 40(4):042102. DOI:10.1118/1.4794496.
[13] Pojtinger S, Dohm OS, Thorwarth D. Optimal orientation for ionization chambers in MRgRT reference dosimetry[J]. Curr Direct Biomed Engineer, 2017, 3(2):273-275. DOI:10.1515/cdbme-2017-0056.
[14] Reynolds M, Rathee S, Fallone BG. Technical note:ion chamber angular dependence in a magnetic field[J]. Med Phys, 2017, 44(8):4322-4328. DOI:10.1002/mp.12405.
[15] Hackett SL, van Asselen B, Wolthaus JWH, et al. Consequences of air around an ionization chamber:are existing solid phantoms suitable for reference dosimetry on an MR-linac?[J]. Med Phys, 2016, 43(7):3961-3968. DOI:10.1118/1.4952727.
[16] O′Brien DJ, Sawakuchi GO. Monte Carlo study of the chamber-phantom air gap effect in a magnetic field[J]. Med Phys, 2017, 44(7):3830-3838. DOI:10.1002/mp.12290.
[17] Malkov VN, Rogers DWO. Sensitive volume effects on Monte Carlo calculated ion chamber response in magnetic fields[J]. Med Phys, 2017, 44(9):4854-4858. DOI:10.1002/mp.12421.
[18] Spindeldreier CK, Schrenk O, Ahmed MF, et al. Feasibility of dosimetry with optically stimulated luminescence detectors in magnetic fields[J]. Radiat Measure, 2017, 106:346-351. DOI:10.1016/j.radmeas.2017.03.018.
[19] Stefanowicz S, Latzel H, Lindvold LR, et al. Dosimetry in clinical static magnetic fields using plastic scintillation detectors[J]. Radiat Measure, 2013, 56(Complete):357-360. DOI:10.1016/j.radmeas.2013.03.012.
[20] De Prez L, De Pooter J, Jansen B, et al. A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment[J]. Phys Med Biol, 2016, 61(13):5051-5076. DOI:10.1088/0031-9155/61/13/5051.
[21] De Prez L, De Pooter J, Jansen B, et al. Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields[J]. Phys Med Biol, 2018, 64(3):035013. DOI:10.1088/1361-6560/aaf975.
[22] Reynoso FJ, Curcuru A, Green O, et al. Technical note:magnetic field effects on GafChromic-film response in MR-IGRT[J]. Med Phys, 2016, 43(12):6552-6556. DOI:10.1118/1.4967486.
[23] Delfs B, Schoenfeld AA, Poppinga D, et al. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons[J]. Phys Med Biol, 2017, 63(3):035028. DOI:10.1088/1361-6560/aa9bd5.
[24] Barten DLJ, Daan H, Palacios MA, et al. Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging[J]. Phys Med Biol, 2018, 63(16):165014. DOI:10.1088/1361-6560/aad58d.
[25] Steinmann A, O′Brien D, Stafford R, et al. Investigation of TLD and EBT3 performance under the presence of 1.5T, 0.35T, and 0T magnetic field strengths in MR/CT visible materials[J]. Med Phys, 2019, 46(7):3217-3226. DOI:10.1002/mp.13527.
[26] Smit K. Dosimetry for the MR-linac[D]. Netherlands:Universiteit Utrecht, 2015.
[27] Smit K, Kok JGM, Lagendijk JJW, et al. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field[J]. Phys Med Biol, 2014, 59(7):1845-1855. DOI:10.1088/0031-9155/59/7/1845.
[28] Ellefson ST, Culberson WS, Bednarz BP, et al. An analysis of the ArcCHECK-MR diode array′s performance for ViewRay quality assurance[J]. J Appl Clin Med Phys, 2017, 18(4):161-171. DOI:10.1002/acm2.12107.
[29] De JV, Seravalli E, Houweling AC, et al. Characterization of a prototype MR-compatible Delta4 QA-system in a 1.5 tesla MR-linac[J]. Phys Med Biol, 2017, 63(2):02NT02. DOI:10.1088/1361-6560/aa9d26.
[30] Houweling AC, Vries JHWD, Wolthaus J, et al. Performance of a cylindrical diode array for use in a 1.5 T MR-linac[J]. Phys Med Biol, 2016, 61(3):N80-N89. DOI:10.1088/0031-9155/61/3/N80.
[31] Won Choi G. Measurement of the electron return effect using PRESAGE dosimeter[D]. Houston:The University of Texas, 2016.
[32] Lee HJ, Roed Y, Venkataraman S, et al. Investigation of magnetic field effects on the dose-response of 3D dosimeters for magnetic resonance-image guided radiation therapy applications[J]. Radiother Oncol, 2017, 125(3):426-432. DOI:10.1016/j.radonc.2017.08.027.
[33] Lee HJ, Won Choi G, Alqathami M, et al. Using 3D dosimetry to quantify the electron return effect (ERE) for MR-image-guided radiation therapy (MR-IGRT) applications[J]. J Phys Confer Ser, 2017, 847:012057. DOI:10.1088/1742-6596/847/1/012057.
[34] Costa F, Doran SJ, Hanson IM, et al. Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGER 3D dosimeter and Monte Carlo simulations[J]. Phys Med Biol, 2018, 63(10):05NT01. DOI:10.1088/1361-6560/aaaca2.
[35] Zhang L, Du D, Green O, et al. TU-C-BRE-04:3D gel dosimetry using ViewRay on-board MR scanner:a feasibility study[J]. Med Phys, 2014, 41(6 Part 26):455-455. DOI:10.1118/1.4889267.
[36] Zhang L, Hu Y, Du D, et al. Three-dimensional polymer gel dosimetry using an onboard 0.35 T magnetic resonance imaging scanner:a simulation study[J]. J Med Phys, 2015, 40(3):176-180. DOI:10.4103/0971-6203.165081.
[37] Ibbott GS, Roed Y, Lee H, et al. Gel dosimetry enables volumetric evaluation of dose distributions from an MR-guided linac[J]. AIP Confer Proceed, 2016, 1747(1):040002. DOI:10.1063/1.4954102.
[38] Lee HJ, Alqathami M, Kadbi M, et al. Feasibility of using 3-dimensional (3D) radiochromic dosimeters for real-time 2-dimensional and 3D dose distribution measurements in magnetic resonance-guided radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2016, 96(2):E631. DOI:10.1016/j.ijrobp.2016.06.2208.
[39] Lee HJ, Kadbi M, Bosco G, et al. Real-time volumetric relative dosimetry for magnetic resonance-image-guided radiation therapy (MR-IGRT)[J]. Phys Med Biol, 2018, 63(4):045021. DOI:10.1088/1361-6560/aaac22.