AbstractObjective To compare the dosimetric differences between free-hand method and virtually optimized method for implanting needles in intracavitary and interstitial combined brachytherapy (IC/IS BT) of cervical cancer, and to explore the improvement space of the existing interstitial brahcytherapy plan. Methods High-dose-rate cervical cancer IC/IS BT plans (short for Treatment-Plan) of 18 cases were retrospectively analyzed. For each treatment plan, Nucletron Oncentra 3D brachytherapy planning system was utilized to redesign the virtually optimized insertion method IC/IS BT plan (short for Optimized-Plan). Dose volume histogram was adopted to evaluate the dose distribution in high-risk clinical target areas and exposure dose to organ at risk (OAR). The plan execution efficiency between two plans was also assessed. Results Comparing these two plans, the differences in conformity and uniformity of dose distribution of the target area were statistically significant (P=0.000,0.008). The differences of D0.01 cm3, D1 cm3, D2 cm3 and D5 cm3 in bladder, rectum, sigmoid and small bowel were all statistically significant (all P<0.05). Optimized-Plan could reduce the D2 cm3 of bladder, rectum, sigmoid and small bowel by 60.41, 36.43, 27.53 and 12.43 cGy, respectively. The execution time for the Treatment-Plan and Optimized-Plan were (857.92±243.39) s and (804.53±239.13) s with statistical significance (P<0.001). Conclusions Compared with the free-hand method, virtually optimized method yields more conformable coverage of the target area and more uniform dose distribution. At the same time, the doses of each OAR are reduced to different degrees and the execution time of the plan is also shortened.
Fund:Zhejiang Medical and Health Science and Technology Project (2015KYB053,2017PY013,2018PY005);Zhejiang Traditional Chinese Medicine Science and Technology Plan (2015ZB018);Open Project Support of Key Laboratory of Ministry of Radiation Physics and Technology Education (2018SCURPT09)
Corresponding Authors:
Wang Binbing,Email:wangbb@zjcc.org.cn
Cite this article:
Chen Xiang,Zhou Jianliang,Zhang Xiang et al. Study of the feasibility of needle path optimization in 3D brachytherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(3): 215-219.
Chen Xiang,Zhou Jianliang,Zhang Xiang et al. Study of the feasibility of needle path optimization in 3D brachytherapy for cervical cancer[J]. Chinese Journal of Radiation Oncology, 2020, 29(3): 215-219.
[1] 黄曼妮,安菊生,杜霄勐. 宫颈癌放射治疗的研究进展[J]. 中华妇幼临床医学杂志,2016,12(1):7-15. DOI:10.3877/cma.j.issn.1673-5250.2016.01.002.
Huang MN,An JS,Du XM. Research progress of radiotherapy for cervical cancer[J]. Chin J Obstet Gynecol Pediat,2016,12(1):7-15. DOI:10.3877/cma.j.issn.1673-5250.2016.01.002.
[2] Mabuchi S,Isohashi F,Yokoi T,et al. A phase Ⅱ study of postoperative concurrent carboplatin and paclitaxel combined with intensity-modulated pelvic radiotherapy followed by consolidation chemotherapy in surgically treated cervical cancer patients with positive pelvic lymph nodes[J]. Gynecol Oncol,2016,141(2):240-246. DOI:10.1016/j.ygyno.2016.02.011.
[3] Han K,Milosevic M,Fyles A,et al. Trends in the utilization of brachytherapy in cervical cancer in the United States[J]. Int J Radiat Oncol Biol Phys,2013,87(1):111-119. DOI:10.1016/j.ijrobp.2013.05.033.
[4] Tanderup K,Eifel PJ,Yashar CM,et al. Curative radiation therapy for locally advanced cervical cancer:brachytherapy is NOT optional[J]. Int J Radiat Oncol Biol Phys,2014,88(3):537-539. DOI:10.1016/j.ijrobp.2013.11.011.
[5] FCOG Oncology. FIGO staging for carcinoma of the vulva,cervix,and corpus uteri[J]. Int J Gynecol Obstet,2014,125(2):97-98. DOI:10.1016/j.ijgo.2014.02.003.
[6] Haiemeder C,Pötter R,Van LE,et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group (Ⅰ):concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV[J]. Radiother Oncol,2005,74(3):235-245. DOI:10.1016/j.radonc.2004.12.015.
[7] Pötter R,Haiemeder C,Van LE,et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (Ⅱ):Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy,radiation physics,radiobiolog[J]. Radiother Oncol,2006,78(1):67-77. DOI:10.1016/j.radonc.2005.11.014.
[8] Hegazy N,Kirisits C,Berger D,et al. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy:impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination[J]. Acta Oncol,2013,52(7):1345-1352. DOI:10.3109/0284186X.2013.813068.
[9] Menon G,Huang F,Sloboda R,et al. Practically achievable maximum high-risk clinical target volume doses in MRI-guided intracavitary brachytherapy for cervical cancer:a planning study[J]. Brachytherapy,2014,13(6):572-578. DOI:10.1016/j.brachy.2014.06.006.
[10] 余辉,张书旭. 宫颈癌后装治疗剂量的调强优化方法[J]. 中国医学物理学杂志,2014,31(5):5114-5119. DOI:10.3969/j.issn.1005-202X.2014.05.004.
Yu H,Zhang SX. Optimized intensity modulation method for post-treatment dose of cervical cancer[J]. Chin J Med Phys,2014,31(5):5114-5119. DOI:10.3969/j.issn.1005-202X.2014.05.004.
[11] 刘志杰,朱小东,付庆国,等. 逆向优化算法在宫颈癌三维近距离放疗计划制定中的应用[J]. 广西医学,2017,46(12):1805-1807. DOI:10.11675/j.issn.0253-4304.2017.12.11.
Liu ZJ,Zhu XD,Fu QG,et al. Application of inverse optimization algorithm in planning of 3D brachytherapy for cervical cancer[J]. Guangxi Med J,2017,46(12):1805-1807. DOI:10.11675/j.issn.0253-4304.2017.12.11.
[12] Jamema SV,Sharma S,Mahantshetty U,et al. Comparison of IPSA with dose-point optimization and manual optimization for interstitial template brachytherapy for gynecologic cancers[J]. Brachytherapy,2011,10(4):306-312. DOI:10.1016/j.brachy.2010.08.011.
[13] 倪千喜,唐迪红,张九堂. 妇科肿瘤后装逆向调强放射治疗的剂量学和疗效研究[J]. 中国医学物理学杂志,2013,30(6):4487-4490. DOI:10.3969/j.issn.1005-202X.2013.06.005.
Ni QX,Tang DH,Zhang JT. Dosimetry and efficacy of retrograde intensity modulated radiation therapy for gynecological tumors[J]. Chin J Med Phys,2013,30(6):4487-4490. DOI:10.3969/j.issn.1005-202X.2013.06.005.
[14] Swamidas J,Umesh M,Deshpande DD,et al. Does help structures play a role in reducing the variation of dwell time in IPSA planning for gynaecological brachytherapy application?[J]. J Contemp Brachyther,2011,3(3):142-149. DOI:10.5114/jcb.2011.24821.
[15] Christoforou EG,Seimenis I,Andreou E,et al. A novel,general-purpose,MR-compatible,manually actuated robotic manipulation system for minimally invasive interventions under direct MRI guidance[J]. Int J Med Robot,2014,10(1):22. DOI:10.1002/rcs.1504.
[16] Qu A,Sun H,Wang J,et al.3D Printing individual applicator used for interstitial brachytherapy in recurrent cervical cancer[J]. Brachytherapy,2017,16(3):S68-S69. DOI:10.1016/j.brachy.2017.04.119.
[17] Gladwish A,Ravi A,Mendez L,et al. Impact of adaptive planning on image-guided perineal brachytherapy for gynecologic malignancies[J]. Brachytherapy,2017,16(3):S60. DOI:10.1016/j.brachy.2017.11.005.
[18] Arnolli MM,Hanumara NC,Franken M,et al. An overview of systems for CT-and MRI-guided percutaneous needle placement in the thorax and abdomen[J]. Int J Med Robot,2016,11(4):458-475. DOI:10.1002/rcs.1630.