[an error occurred while processing this directive] | [an error occurred while processing this directive]
Radiation-induced changes in small world network in patients with nasopharyngeal carcinoma:a three-dimensional structure MRI imaging study
Xin Xin1, Cheng Chuandong1, Li Churong1, Li Jie1, Wang Pei, Tian Yin2, Yin Gang1, Lang Jinyi1
1Department of Radiation Oncology,Sichuan Cancer Hospital/Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041,China; 2Chongqing University of Posts and Telecommunications,Chongqing 404100,China
AbstractObjective To investigate the radiotherapy (RT)-induced changes in the brain structural network in patients with nasopharyngeal carcinoma (NPC). Methods Three-dimensional structural magnetic resonance data (3D-T1W) was adopted to investigate the structural network in 103 patients with NPC before and after receiving RT. The structural networks were then reconstructed using 3D-T1W. The radiation-induced changes in topology properties of small world network were analyzed by using graph theoretical analysis. Results Patients showed small world properties before and after RT. Compared with the pre-RT group, the global and local efficiency were lower, the shortest path length was longer and the clustering coefficient was less in the post-RT group. In addition, the hub regions in the post-RT group were significantly different from those in the pre-RT group, mainly located in the left rolandic operculum, right inferior frontal gyrus, right parahippocampal gyrus, right lingual gyrus, bilateral supramarginal gyrus, left superior temporal gyrus and temporal pole of the right middle temporal gyrus. Conclusion It is speculated that RT leads to high efficiency of network topology and information transmission, which provides a novel perspective for exploring the RT-induced brain changes, diagnosis of RT-induced injury and evaluation of RT efficacy.
Fund:Sichuan Provincial Health and Planning Commission Project (16PJ512);Sichuan Medical Association Project (S17068);Sichuan Provincial Science and Technology Major Special Program (2017SZ0004);Sichuan Science and Technology Department Project (2019YFG0185);Sichuan Science and Technology Planning Project (2019YJ0581)
Corresponding Authors:
Lang Jinyi,Email:langjy610@163.com;Yin Gang,Email:cxqyguestc@163.com
Cite this article:
Xin Xin,Cheng Chuandong,Li Churong et al. Radiation-induced changes in small world network in patients with nasopharyngeal carcinoma:a three-dimensional structure MRI imaging study[J]. Chinese Journal of Radiation Oncology, 2019, 28(11): 811-816.
Xin Xin,Cheng Chuandong,Li Churong et al. Radiation-induced changes in small world network in patients with nasopharyngeal carcinoma:a three-dimensional structure MRI imaging study[J]. Chinese Journal of Radiation Oncology, 2019, 28(11): 811-816.
[1] Chan AT. Nasopharyngeal carcinoma[J]. Ann J Med Oncol,2010,21 Suppl 7:vii308. DOI:10.1093/annonc/mdq277. [2] Ying S,Zhou GQ,Qi ZY,et al. Radiation-induced temporal lobe injury after intensity modulated radiotherapy in nasopharyngeal carcinoma patients:a dose-volume-outcome analysis[J]. BMC Cancer,2013,13(1):397-397. DOI:10.1186/1471-2407-13-397. [3] Chan YL,Leung SF,King AD,et al. Late radiation injury to the temporal lobes:morphologic evaluation at MR imaging[J]. Radiology,1999,213(3):800-807. DOI:10.1148/radiology.213.3.r99dc07800 [4] Peterson K,Clark HB,Hall WA,et al. Multifocal enhancing magnetic resonance imaging lesions following cranial irradiation[J]. Ann Neurol,1995,38(2):237-244. DOI:10.1002/ana.410380217 [5] Lyu XF,Zheng XL,Zhang WD,et al. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma:a magnetic resonance imaging voxel-based morphometry study[J]. Neuroradiology,2014,56(5):423-430. DOI:10.1007/s00234-014-1338-y. [6] King AD,Ahuja AT,Yeung DK,et al. Delayed complications of radiotherapy treatment for nasopharyngeal carcinoma:imaging findings[J]. Clin Radiol,2007,62(3):195-203. DOI:10.1016/j.crad.2006.10.011. [7] Lin J,Lyu X,Niu M,et al. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy[J]. Neuroimag Clin,2017,14(C):610-621. DOI:10.1016/j.nicl.2017.02.025. [8] Ma Q,Wu D,Zeng LL,et al. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy[J]. Medicine,2016,95(29):e4275. DOI:10.1097/md.0000000000004275. [9] Duan F,Cheng J,Jiang J,et al. Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma:a diffusion tensor imaging study[J]. Head Neck Surg,2016,273(12):4453-4459. DOI:10.1007/s00405-016-4127-x. [10] Wang HZ,Qiu SJ,Lyu XF,et al. Diffusion tensor imaging and 1 H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy[J]. Clin Radiol,2012,67(4):340-345. DOI:10.1016/j.crad.2011.09.008. [11] Achard S,Bullmore E. Efficiency and cost of economical brain functional networks[J/OL]. Plos Computational Biol,2007,3(2):e17. DOI:10.1371/journal.pcbi.0030017. [12] Wang J,Wang X,Xia M,et al. GRETNA:a graph theoretical network analysis toolbox for imaging connectomics[J]. Front Human Neurosci,2015,9(386):386-386. DOI:10.3389/fnhum.2015.00386. [13] Watts DJ,Strogatz SH. Collective dynamics of 'small-world' networks[J]. Nature,1998, 393(6684):440-442. DOI:10.1038/30918 [14] Sporns O,Honey CJ,Ktter R. Identification and classification of hubs in brain networks[J/OL]. Plos One,2007,2(10):e1049. DOI:10.1371/journal.pone.0001049. [15] Matthews PM,Filippini N,Douaud G. Brain structural and functional connectivity and the progression of neuropathology in Alzheimer′s disease[J]. J Alzheimers Dis,2013,33(Suppl 1):S163-S172. DOI:10.3233/JAD-2012-129012. [16] Yao Z,Zhang Y,Lin L,et al. Abnormal cortical networks in mild cognitive impairment and alzheimer′s disease[J/OL]. PLoS Computat Biol,2010,6(11):1-9. DOI:10.1371/journal.pcbi.1001006. [17] Mechelli A,Friston KJ,Frackowiak RS,et al. Structural covariance in the human cortex[J]. J Neurosci,2005,25(36):8303-8310. DOI:10.1523/JNEUROSCI.0357-05.2005. [18] Montembeault M,Rouleau I,Provost JS,et al. Altered graymatter structural covariance networks in early stages of Alzheimer′s disease[J]. Cerebral Cortex,2015,26(6):2650-2663. DOI:10.1093/cercor/bhv105. [19] Zhu W,Wei W,Yong H,et al. Changing topological patterns in normal aging using large-scale structural networks[J]. Neurobiol Aging,2012,33(5):899-913. DOI:10.1016/j.neurobiolaging.2010.06.022. [20] Strogatz SH. Exploring complex networks[J]. Nature,2001,410(6825):268-276. DOI:10.1038/35065725. [21] He Y,Chen Z,Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer′s disease[J]. J Soci Neurosci,2008,28(18):4756-4766. DOI:10.1016/j.jalz.2008.05.830. [22] Jiang TZ,Liu Y,Li YH, Brain networks:from anatomy to dynamics[J]. Chin Bull Life Sci,2009,21(2):181-188. DOI:10.13376/j.cbls/2009.02.027. [23] Su DJ. The sutdy of Cognitive funciton in Patients with nasophayrnegeal carcinoma after the radiohterapy[D]. Nanning:Guangxi medical university,2005 [24] Duan FH,Qiu SJ,Zhang Y. Correlation between the differences of white matter microstructure and cognition in radiotherapy and non-radiotherapy patients for nasopharyngeal carcinoma[J]. J Clin Radiol,2016,35(11),1642-1646. DOI:10.13437/j.cnki.jcr.2016.11.004. [25] Bullmore E,Sporns O. The economy of brain network organization[J]. Nature Rev Neurosci,2012,13(13):336-349. DOI:10.1038/nrn3214. [26] Hsiao KY,Yeh SA,Chang CC,et al. Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma:a prospective study[J]. Int J Radiat Oncol Biol Phys,2010,77(3):722-726. DOI:10.1016/j.ijrobp.2009.06.080. [27] Ho NF,Chong JSX,Hui LK,et al. Intrinsic affective network is impaired in children with attention-deficit/hyperactivity disorder[J/OL]. Plos One,2015,10(9):e0139018. DOI:10.1371/journal.pone.0139018. [28] Cha J,Dedora D,Nedic S,et al. Clinically anxious individuals show disrupted feedback between inferior frontal gyrus and prefrontal-limbic control circuit[J]. J Soci Neurosci,2016,36(17):4708-4718. DOI:10.1523/JNEUROSCI.1092-15.2016. [29] Vasavada MM,Wang J,Eslinger PJ,et al. Olfactory cortex degeneration in Alzheimer′s disease and mild cognitive impairment[J]. J Alzheimers Dis,2015,45(3):947-958. DOI:10.3233/JAD-141947. [30] Wang JJ,Liang KL,Twu CW,et al. Olfactory change after intensity-modulated radiotherapy for nasopharyngeal carcinoma[J]. Int Forum Allergy Rhinol,2016,5(11):1059-1062. DOI:10.1002/alr.21575. [31] Zielinski BA,Gennatas ED,Zhou J,et al. Network-level structural covariance in the developing brain[J]. Proc Nat Acad Sci USA,2010,107(42):18191-6. DOI:10.1073/pnas.1003109107. [32] Hua MS,Chen ST,Tang LM,et al. Neuropsychological function in patients with nasopharyngeal carcinoma after radiotherapy[J]. J Clin Exper Neuropsychol,1998,20(5):684-693. DOI:10.1076/jcen.20.5.684.1131 [33] Phua SY,Leow LP,Chan MFL. Delayed onset of swallowing impairment following radiotherapy for nasopharyngeal carcinoma (NPC)[J]. As Pac J Speech Lang Hear,2013,9(1):33-39. DOI:10.1179/136132804805576056. [34] Zarnhofer S. The influence of verbalization on the pattern of cortical activation during mental arithmetic[J]. Beha Br Funct,2012,8(1):13. DOI:10.1186/1744-9081-8-13. [35] Deschamps I,Baum SR,Gracco VL. On the role of the supramarginal gyrus in phonological processing and verbal working memory:evidence from rTMS studies[J]. Neuropsychologia,2014,53(4):39-46. DOI:10.1016/j.neuropsychologia.2013.10.015. [36] Jia Q,Hu G. Study on the factors of hearing impairment in patients with nasopharyngeal carcinoma treated by radiotherapy[J]. Chin Commun Doct,2017,33(18),45-45+47. DOI:10.3969/j.issn.1007-614x.2017.18.26.