AbstractObjective To apply 3D printing technology to fabricate patient-specific silicone tissue compensators for the chest wall and compare the advantages and clinical characteristics between conventional bolus and 3D-printed PLA materials. Methods The chest wall data of two breast cancer patients undergoing mastectomy were obtained based upon the CT images. A patient-specific 3D printing silicone rubber bolus (3D-SRB) was designed and fabricated. The conformability of 3D-SRB,3D-PLA and conventional bolus to the chest wall were validated. Ecipse8.6 planning system was adopted to statistically compare the dosimetric parameters of virtual plan with those after using three tissue compensators. Results The 3D-SRB was successfully designed and fabricated with a similar hardness to conventional bolus. During the process of validating conformability and radiotherapy planning,3D-SRB and 3D-PLA were superior to conventional bolus in terms of conformability to chest wall and planning dosimetric distribution.3D-SRB was advantageous in repeatability,conformability and comfortable experience compared with 3D-PLA.Regarding dosimetric parameters,3D-SRB yielded the highest repeatability with the virtual plan,followed by 3D-PLA and conventional bolus. Conclusion It is applicable to utilize 3D-SRB as the patient-specific compensators for the chest wall,which is of significance in clinical practice.
Corresponding Authors:
Li Xianfeng,Email:lixianfeng-lxf@263.net
Cite this article:
Hou Yanjie,Yu Jiangping,Wang Yongqiang et al. Fabrication and pre-clinical application of patient-specific 3D silicone rubber bolus for chest wall[J]. Chinese Journal of Radiation Oncology, 2018, 27(9): 835-838.
Hou Yanjie,Yu Jiangping,Wang Yongqiang et al. Fabrication and pre-clinical application of patient-specific 3D silicone rubber bolus for chest wall[J]. Chinese Journal of Radiation Oncology, 2018, 27(9): 835-838.
[1] 李奕彤,王雅棣.乳腺癌根治术后皮肤填充物在放疗中的应用[J].中华放射肿瘤学杂志,2014,23(001):78-79.DOI:10.3760/cma.j.issn.1004-4221.2014.01.022. Li YT,Wang YD.Application of skin fillers after radical mastectomy in radiotherapy[J].Chin J Radiat Oncol,2014,23(001):78-79.DOI:10.3760/cma.j.issn.1004-4221.2014.01.022. [2] Whelan TJ,Julian J,Wright J,et al. Does locoregional radiation therapy improve survival in breast cancer? A Meta-analysis[J].J Clin Oncol,2000,18(6):1220-1229.DOI:10.1200/JCO.2000.18.6.1220. [3] Butson MJ,Cheung T,Yu P,et al. Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy[J].Radiat Meas,2000,32(3):201-204. [4] Kong M,Holloway L.An investigation of central axis depth dose distribution perturbation due to an air gap between patient and bolus for electron beams[J].Aust Phys Eng Sci Med,2007,30(2):111-119. [5] Vyas V,Palmer L,Mudge R,et al. On bolus for megavoltage photon and electron radiation therapy[J].Med Dosim,2013,38(3):268-273.DOI:10.1016/j.meddos.2013.02.007. [6] 中华放射肿瘤学分会.3D 打印非共面模板辅助CT引导放射性125I粒子植入治疗技术流程与 QC 的专家共识[J].中华放射肿瘤学杂志,2017,26(5):495-500.DOI:10.3760/cma.j.issn.1004-4221.2017.05.003. China Radiation Oncology Group.3D printing non-coplanar template-assisted CT-guided radioactive 125I seed implantation in the treatment of technical flow and QC expert consensus[J].Chin J Radiat Oncol,2017,26(5):495-500.DOI:10.3760/cma.j.issn.1004-4221.2017.05.003. [7] Wang J,Zhang F,Guo J,et al. Expert consensus workshop report:Guideline for three-dimensional printing template-assisted computed tomography-guided 125I seeds interstitial implantation brachytherapy[J].J Cancer Res Ther,2017,13(4):607.DOI:10.4103/jcrt. JCRT_412_17. [8] 于浪,连欣,晏俊芳,等.3D 打印技术在 CT 引导宫颈癌术后阴道残端肿瘤近距离治疗中应用[J].中华放射肿瘤学杂志,2016,25(9):965-967.DOI:10.3760/cma.j.issn.1004-4221.2016.09.013. Yu L,Lian X,Yan JF,et al. Application of 3D printing in the treatment of vaginal stump tumor after cervical cancer surgery guided by CT[J].Chin J Radiat Oncol,2016,25(9):965-967.DOI:10.3760/cma.j.issn.1004-4221.2016.09.013. [9] Jones EL,Baldion AT,Thomas C,et al. Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy[J].Brachytherapy,2017,16(2):409-414.DOI:10.1016/j.brachy.2016.11.003. [10] Su S,Moran K,Robar JL.Design and production of 3D printed bolus for electron radiation therapy[J].J Aapp Clin Med Phys,2014,15(4):194-211.DOI:10.1120/jacmp.v15i4.4831. [11] 王峻峰,李定宇,黄章玲,等.Merkel 细胞癌电子线放疗中 3D 打印补偿物的模拟应用[J].中华放射肿瘤学杂志,2016,25(9):999-1002.DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. Wang JF,Li DJ,Huang ZL,et al. Simulated application of 3D print compensator in electron line radiotherapy for Merkel cell carcinoma[J].Chin J Radiat Oncol,2016,25(9):999-1002.DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. [12] 张敏,赵波,尹金鹏,等.新型 3D 打印组织补偿物的放疗应用研究[J].中华放射肿瘤学杂志,2017,(02):210-214.DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. Zhang M,Zhao B,Yin JP,et al. Application of new 3D printing tissue compensator in radiotherapy[J].Chin J Radiat Oncol,2017,(02):210-214.DOI:10.3760/cma.j.issn.1004-4221.2016.09.022. [13] Park JW,Yea JW.Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura′s disease involving the auricle[J].Cancer Radiother,2016,20(3):205-209.DOI:10.1016/j.canrad.2015.11.003. [14] Canters RA,Lips IM,Wendling M,et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer[J].Radiother Oncol,2016,121(1):148-153.DOI:10.1016/j.radonc.2016.07.011. [15] Park SY,Choi CH,Park JM,et al. A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy[J/OL].PLoS One,2016,11(12):e0168063.DOI:10.1371/journal.pone.0168063.