miR-485-3p regulates radiosensitivity of gastric cancer cells by targeting ATR
Li Mingjun,Geng Li,Qin Yanru,Gu Hao,Wu Guangyin,Fan Ruitai,Shi Yonggang,Zhang Mingzhi
Department of Medical Oncology (Li MJ,Geng L,Qin YR,Zhang MZ),Department of Radiotherapy(Gu H,Fan RT,Shi YG),First Affiliated Hospital of Zhengzhou University,Zhengzhou,450052 China;Department of Radiotherapy,Henan Provincial People’s Hospital (Wu GY)
Abstract:Objective To investigate the effect of miR-485-3p on the radiosensitivity of gastric carcinoma MGC803 cells and the possible mechanism of action. Methods The MGC803 cells were transfected with miR-485-3p mimic or ATR siRNA and then treated by radiation. The MTT method, colony-forming assay, and apoptosis test were used to measure the change in radiosensitivity of such cells. RT-PCR and Western blot were used to measure the changes in the expression of miR-485-3p and ATR, and DIANA, TargetScan, and miRanda software and dual-luciferase reporter assay were used to verify the targeted effect of miR-485-3p on ATR. Results After radiation treatment, the expression of miR-485-3p in gastric carcinoma cells was downregulated. The overexpression of miR-485-3p reduced the proliferative capacity and colony-forming ability of cells, increased apoptosis rate, and thus increased radiosensitivity. The software for target gene prediction found that ATR might be the target gene of miR-485-3p, and the dual-luciferase reporter assay further confirmed that ATR was the direct target of miR-485-3p. The miR-485-3p downregulated the expression of ATR, and the inhibition of the ATR signaling pathway by transfection with ATR siRNA increased the radiosensitivity of gastric carcinoma cells. Conclusions The miR-485-3p may target at ATR and regulate the radiosensitivity of gastric carcinoma cells through inhibiting the ATR signaling pathway.
Li Mingjun,Geng Li,Qin Yanru et al. miR-485-3p regulates radiosensitivity of gastric cancer cells by targeting ATR[J]. Chinese Journal of Radiation Oncology, 2016, 25(7): 770-774.
[1]Hundahl SA,Phillips JL,Menck HR.The national cancer data base report on poor survival of U.S.gastric carcinoma patients treated with gastrectomy[J].Cancer,2000,88(4):921-932.DOI:10.1002/(SICI)1097-0142(20000215)88:4<921::AID-CNCR24>3.0.CO;2-S [2]Kwon JE,Kim BY,Kwak SY,et al. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1[J].Apoptosis,2013,18(7):896-909.DOI:10.1007/s10495-013-0841-7 [3]Anastasov N,Hfig I,Vasconcellos IG,et al. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells[J].Radiat Oncol,2012,7:206.DOI:10.1186/1748-717X-7-206 [4]Ke G,Liang L,Yang JM,et al. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene[J].Oncogene,2013,32(25):3019-3027.DOI:10.1038/onc.2012.323 [5]Yan D,Ng WL,Zhang XM,et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation[J/OL].PLoS One,2010,5(7):e11397.DOI:10.1371/journal.pone.0011397 [6]Arora H,Qureshi R,Jin SZ,et al.miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1[J].Exp Mol Med,2011,43(5):298-304.DOI:10.3858/emm.2011.43.5.031 [7]He J,Hua J,Ding N,et al. Modulation of microRNAs by ionizing radiation in human gastric cancer[J].Oncol Rep,2014,32(2):787-793.DOI:10.3892/or.2014.3246 [8]Pereira DM,Rodrigues PM,Borralho PM,et al. Delivering the promise of miRNA cancer therapeutics[J].Drug Discov Today,2013,18(5-6):282-289 [9]Guo JM,Miao Y,Xiao BX,et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues[J].J Gastroenterol Hepatol,2009,24(4):652-657.DOI:10.1111/j.1440-1746.2008.05666.x. [10]Ueda T,Volinia S,Okumura H,et al. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis[J].Lancet Oncol,2010,11(2):136-146.DOI:10.1016/S1470-2045(09)70343-2. [11]Yao Y,Suo AL,Li ZF,et al. MicroRNA profiling of human gastric cancer[J].Mol Med Rep,2009,2(6):963-970.DOI:10.3892/mmr_00000199. [12]Liu YX,Xing R,Zhang XD,et al.miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells[J].DNA Repair,2013,12(9):741-750.DOI:10.1016/j.dnarep.2013.06.002. [13]Zhang CZ,Han L,Zhang AL,et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN[J].BMC Cancer,2010,10:367.DOI:10.1186/1471-2407-10-367. [14]Formosa A,Markert EK,Lena AM,et al. MicroRNAs,miR-154,miR-299-5p,miR-376a,miR-376c,miR-377,miR-381,miR-487b,miR-485-3p,miR-495 and miR-654-3p,mapped to the 14q32.31 locus,regulate proliferation,apoptosis,migration and invasion in metastatic prostate cancer cells[J].Oncogene,2014,33(44):5173-5182.DOI:10.1038/onc.2013.451. [15]Anaya-Ruiz M,Bandala C,Perez-Santos JL.miR-485 acts as a tumor suppressor by inhibiting cell growth and migration in breast carcinoma T47D cells[J].Asian Pac J Cancer Prev,2013,14(6):3757-3760.DOI:10.7314/APJCP.2013.14.6.3757. [16]Chen CF,He XL,Arslan AD,et al. Novel regulation of nuclear factor-YB by miR-485-3p affects the expression of DNA topoisomerase Ⅱα and drug responsiveness[J].Mol Pharmacol,2011,79(4):735-741. [17]孙佳,李胜范,郑丽丽.ATM/ATR在DNA损伤反应中的作用[J].中华临床医师杂志(电子版),2011,5(6):1683-1686.DOI:10.3877/cma.j.issn.1674-0785.2011.06.028. Sun J,Li SHF,Zheng LL.The role of ATM/ATR in DNA damage response[J].Chin J Clinicians (Elect Ed),2011,5(6):1683-1686.DOI:10.3877/cma.j.issn.1674-0785.2011.06.028. [18]Prevo R,Fokas E,Reaper PM,et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy[J].Cancer Biol Ther,2012,13(11):1072-1081.DOI:10.4161/cbt.21093. [19]Fokas E,Prevo R,Pollard JR,et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation[J].Cell Death Dis,2012,3(12):e441.DOI:10.1038/cddis.2012.181. [20]Hurley PJ,Wilsker D,Bunz F.Human cancer cells require ATR for cell cycle progression following exposure to ionizing radiation[J].Oncogene,2007,26(18):2535-2542.DOI:10.1038/sj.onc.1210049.